(* Title: ZF/UNITY/FP.thy
Author: Sidi O Ehmety, Computer Laboratory
Copyright 2001 University of Cambridge
From Misra, "A Logic for Concurrent Programming", 1994
Theory ported from HOL.
*)
header{*Fixed Point of a Program*}
theory FP imports UNITY begin
definition
FP_Orig :: "i=>i" where
"FP_Orig(F) == Union({A \<in> Pow(state). \<forall>B. F \<in> stable(A Int B)})"
definition
FP :: "i=>i" where
"FP(F) == {s\<in>state. F \<in> stable({s})}"
lemma FP_Orig_type: "FP_Orig(F) \<subseteq> state"
by (unfold FP_Orig_def, blast)
lemma st_set_FP_Orig [iff]: "st_set(FP_Orig(F))"
apply (unfold st_set_def)
apply (rule FP_Orig_type)
done
lemma FP_type: "FP(F) \<subseteq> state"
by (unfold FP_def, blast)
lemma st_set_FP [iff]: "st_set(FP(F))"
apply (unfold st_set_def)
apply (rule FP_type)
done
lemma stable_FP_Orig_Int: "F \<in> program ==> F \<in> stable(FP_Orig(F) Int B)"
apply (simp only: FP_Orig_def stable_def Int_Union2)
apply (blast intro: constrains_UN)
done
lemma FP_Orig_weakest2:
"[| \<forall>B. F \<in> stable (A Int B); st_set(A) |] ==> A \<subseteq> FP_Orig(F)"
by (unfold FP_Orig_def stable_def st_set_def, blast)
lemmas FP_Orig_weakest = allI [THEN FP_Orig_weakest2, standard]
lemma stable_FP_Int: "F \<in> program ==> F \<in> stable (FP(F) Int B)"
apply (subgoal_tac "FP (F) Int B = (\<Union>x\<in>B. FP (F) Int {x}) ")
prefer 2 apply blast
apply (simp (no_asm_simp) add: Int_cons_right)
apply (unfold FP_def stable_def)
apply (rule constrains_UN)
apply (auto simp add: cons_absorb)
done
lemma FP_subset_FP_Orig: "F \<in> program ==> FP(F) \<subseteq> FP_Orig(F)"
by (rule stable_FP_Int [THEN FP_Orig_weakest], auto)
lemma FP_Orig_subset_FP: "F \<in> program ==> FP_Orig(F) \<subseteq> FP(F)"
apply (unfold FP_Orig_def FP_def, clarify)
apply (drule_tac x = "{x}" in spec)
apply (simp add: Int_cons_right)
apply (frule stableD2)
apply (auto simp add: cons_absorb st_set_def)
done
lemma FP_equivalence: "F \<in> program ==> FP(F) = FP_Orig(F)"
by (blast intro!: FP_Orig_subset_FP FP_subset_FP_Orig)
lemma FP_weakest [rule_format]:
"[| \<forall>B. F \<in> stable(A Int B); F \<in> program; st_set(A) |] ==> A \<subseteq> FP(F)"
by (simp add: FP_equivalence FP_Orig_weakest)
lemma Diff_FP:
"[| F \<in> program; st_set(A) |]
==> A-FP(F) = (\<Union>act \<in> Acts(F). A - {s \<in> state. act``{s} \<subseteq> {s}})"
by (unfold FP_def stable_def constrains_def st_set_def, blast)
end