(* Title: HOL/Tools/Sledgehammer/sledgehammer_proof_methods.ML
Author: Jasmin Blanchette, TU Muenchen
Author: Steffen Juilf Smolka, TU Muenchen
Reconstructors.
*)
signature SLEDGEHAMMER_PROOF_METHODS =
sig
type stature = ATP_Problem_Generate.stature
datatype proof_method =
Metis_Method of string option * string option |
Meson_Method |
SMT2_Method |
SATx_Method |
Blast_Method |
Simp_Method |
Simp_Size_Method |
Auto_Method |
Fastforce_Method |
Force_Method |
Linarith_Method |
Presburger_Method |
Algebra_Method
datatype play_outcome =
Played of Time.time |
Play_Timed_Out of Time.time |
Play_Failed
type minimize_command = string list -> string
type one_line_params =
(proof_method * play_outcome) * string * (string * stature) list * minimize_command * int * int
val is_proof_method_direct : proof_method -> bool
val string_of_proof_method : Proof.context -> string list -> proof_method -> string
val tac_of_proof_method : Proof.context -> thm list * thm list -> proof_method -> int -> tactic
val string_of_play_outcome : play_outcome -> string
val play_outcome_ord : play_outcome * play_outcome -> order
val one_line_proof_text : Proof.context -> int -> one_line_params -> string
end;
structure Sledgehammer_Proof_Methods : SLEDGEHAMMER_PROOF_METHODS =
struct
open ATP_Util
open ATP_Problem_Generate
open ATP_Proof_Reconstruct
datatype proof_method =
Metis_Method of string option * string option |
Meson_Method |
SMT2_Method |
SATx_Method |
Blast_Method |
Simp_Method |
Simp_Size_Method |
Auto_Method |
Fastforce_Method |
Force_Method |
Linarith_Method |
Presburger_Method |
Algebra_Method
datatype play_outcome =
Played of Time.time |
Play_Timed_Out of Time.time |
Play_Failed
type minimize_command = string list -> string
type one_line_params =
(proof_method * play_outcome) * string * (string * stature) list * minimize_command * int * int
fun is_proof_method_direct (Metis_Method _) = true
| is_proof_method_direct Meson_Method = true
| is_proof_method_direct SMT2_Method = true
| is_proof_method_direct Simp_Method = true
| is_proof_method_direct Simp_Size_Method = true
| is_proof_method_direct _ = false
fun maybe_paren s = s |> not (Symbol_Pos.is_identifier s) ? enclose "(" ")"
fun string_of_proof_method ctxt ss meth =
let
val meth_s =
(case meth of
Metis_Method (NONE, NONE) => "metis"
| Metis_Method (type_enc_opt, lam_trans_opt) =>
"metis (" ^ commas (map_filter I [type_enc_opt, lam_trans_opt]) ^ ")"
| Meson_Method => "meson"
| SMT2_Method => "smt2"
| SATx_Method => "satx"
| Blast_Method => "blast"
| Simp_Method => if null ss then "simp" else "simp add:"
| Simp_Size_Method => "simp add: " ^ short_thm_name ctxt @{thm size_ne_size_imp_ne}
| Auto_Method => "auto"
| Fastforce_Method => "fastforce"
| Force_Method => "force"
| Linarith_Method => "linarith"
| Presburger_Method => "presburger"
| Algebra_Method => "algebra")
in
maybe_paren (space_implode " " (meth_s :: ss))
end
val silence_methods = Try0.silence_methods false
fun tac_of_proof_method ctxt (local_facts, global_facts) meth =
Method.insert_tac local_facts THEN'
(case meth of
Metis_Method (type_enc_opt, lam_trans_opt) =>
let val ctxt = Config.put Metis_Tactic.verbose false ctxt in
Metis_Tactic.metis_tac [type_enc_opt |> the_default (hd partial_type_encs)]
(lam_trans_opt |> the_default default_metis_lam_trans) ctxt global_facts
end
| Meson_Method => Meson_Tactic.meson_general_tac (silence_methods ctxt) global_facts
| SMT2_Method =>
let val ctxt = Config.put SMT2_Config.verbose false ctxt in
SMT2_Solver.smt2_tac ctxt global_facts
end
| Simp_Method => Simplifier.asm_full_simp_tac (silence_methods ctxt addsimps global_facts)
| Simp_Size_Method =>
Simplifier.asm_full_simp_tac
(silence_methods ctxt addsimps (@{thm size_ne_size_imp_ne} :: global_facts))
| _ =>
Method.insert_tac global_facts THEN'
(case meth of
SATx_Method => SAT.satx_tac ctxt
| Blast_Method => blast_tac ctxt
| Auto_Method => K (Clasimp.auto_tac (silence_methods ctxt))
| Fastforce_Method => Clasimp.fast_force_tac (silence_methods ctxt)
| Force_Method => Clasimp.force_tac (silence_methods ctxt)
| Linarith_Method =>
let val ctxt = Config.put Lin_Arith.verbose false ctxt in Lin_Arith.tac ctxt end
| Presburger_Method => Cooper.tac true [] [] ctxt
| Algebra_Method => Groebner.algebra_tac [] [] ctxt))
fun string_of_play_outcome (Played time) = string_of_ext_time (false, time)
| string_of_play_outcome (Play_Timed_Out time) =
if time = Time.zeroTime then "" else string_of_ext_time (true, time) ^ ", timed out"
| string_of_play_outcome Play_Failed = "failed"
fun play_outcome_ord (Played time1, Played time2) =
int_ord (pairself Time.toMilliseconds (time1, time2))
| play_outcome_ord (Played _, _) = LESS
| play_outcome_ord (_, Played _) = GREATER
| play_outcome_ord (Play_Timed_Out time1, Play_Timed_Out time2) =
int_ord (pairself Time.toMilliseconds (time1, time2))
| play_outcome_ord (Play_Timed_Out _, _) = LESS
| play_outcome_ord (_, Play_Timed_Out _) = GREATER
| play_outcome_ord (Play_Failed, Play_Failed) = EQUAL
fun apply_on_subgoal _ 1 = "by "
| apply_on_subgoal 1 _ = "apply "
| apply_on_subgoal i n = "prefer " ^ string_of_int i ^ " " ^ apply_on_subgoal 1 n
(* FIXME *)
fun proof_method_command ctxt meth i n _(*used_chaineds*) _(*num_chained*) ss =
let val (indirect_ss, direct_ss) = if is_proof_method_direct meth then ([], ss) else (ss, []) in
(if null indirect_ss then "" else "using " ^ space_implode " " indirect_ss ^ " ") ^
apply_on_subgoal i n ^ string_of_proof_method ctxt direct_ss meth
end
fun try_command_line banner play command =
let val s = string_of_play_outcome play in
banner ^ ": " ^ Active.sendback_markup [Markup.padding_command] command ^
(s |> s <> "" ? enclose " (" ")") ^ "."
end
fun minimize_line _ [] = ""
| minimize_line minimize_command ss =
(case minimize_command ss of
"" => ""
| command => "\nTo minimize: " ^ Active.sendback_markup [Markup.padding_command] command ^ ".")
fun split_used_facts facts =
facts
|> List.partition (fn (_, (sc, _)) => sc = Chained)
|> pairself (sort_distinct (string_ord o pairself fst))
fun one_line_proof_text ctxt num_chained
((meth, play), banner, used_facts, minimize_command, subgoal, subgoal_count) =
let
val (chained, extra) = split_used_facts used_facts
val try_line =
map fst extra
|> proof_method_command ctxt meth subgoal subgoal_count (map fst chained) num_chained
|> (if play = Play_Failed then enclose "One-line proof reconstruction failed: " "."
else try_command_line banner play)
in
try_line ^ minimize_line minimize_command (map fst (extra @ chained))
end
end;