src/HOL/Integ/IntDiv.thy
author wenzelm
Sat, 06 Oct 2001 00:02:46 +0200
changeset 11704 3c50a2cd6f00
parent 11701 3d51fbf81c17
child 11868 56db9f3a6b3e
permissions -rw-r--r--
* sane numerals (stage 2): plain "num" syntax (removed "#");

(*  Title:      HOL/IntDiv.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1999  University of Cambridge

The division operators div, mod and the divides relation "dvd"
*)

IntDiv = IntArith + Recdef + 

constdefs
  quorem :: "(int*int) * (int*int) => bool"
    "quorem == %((a,b), (q,r)).
                      a = b*q + r &
                      (if Numeral0 < b then Numeral0<=r & r<b else b<r & r <= Numeral0)"

  adjust :: "[int, int, int*int] => int*int"
    "adjust a b == %(q,r). if Numeral0 <= r-b then (2*q + Numeral1, r-b)
                           else (2*q, r)"

(** the division algorithm **)

(*for the case a>=0, b>0*)
consts posDivAlg :: "int*int => int*int"
recdef posDivAlg "inv_image less_than (%(a,b). nat(a - b + Numeral1))"
    "posDivAlg (a,b) =
       (if (a<b | b<=Numeral0) then (Numeral0,a)
        else adjust a b (posDivAlg(a, 2*b)))"

(*for the case a<0, b>0*)
consts negDivAlg :: "int*int => int*int"
recdef negDivAlg "inv_image less_than (%(a,b). nat(- a - b))"
    "negDivAlg (a,b) =
       (if (Numeral0<=a+b | b<=Numeral0) then (-1,a+b)
        else adjust a b (negDivAlg(a, 2*b)))"

(*for the general case b~=0*)

constdefs
  negateSnd :: "int*int => int*int"
    "negateSnd == %(q,r). (q,-r)"

  (*The full division algorithm considers all possible signs for a, b
    including the special case a=0, b<0, because negDivAlg requires a<0*)
  divAlg :: "int*int => int*int"
    "divAlg ==
       %(a,b). if Numeral0<=a then
                  if Numeral0<=b then posDivAlg (a,b)
                  else if a=Numeral0 then (Numeral0,Numeral0)
                       else negateSnd (negDivAlg (-a,-b))
               else 
                  if Numeral0<b then negDivAlg (a,b)
                  else         negateSnd (posDivAlg (-a,-b))"

instance
  int :: "Divides.div"        (*avoid clash with 'div' token*)

defs
  div_def   "a div b == fst (divAlg (a,b))"
  mod_def   "a mod b == snd (divAlg (a,b))"


end