(* Title: HOL/TPTP/THF_Arith.thy
Author: Jasmin Blanchette
Copyright 2011, 2012
Experimental setup for THF arithmetic. This is not connected with the TPTP
parser yet.
*)
theory THF_Arith
imports Complex_Main
begin
consts
is_int :: "'a \<Rightarrow> bool"
is_rat :: "'a \<Rightarrow> bool"
overloading rat_is_int \<equiv> "is_int :: rat \<Rightarrow> bool"
begin
definition "rat_is_int (q::rat) \<longleftrightarrow> (\<exists>n::int. q = of_int n)"
end
overloading real_is_int \<equiv> "is_int :: real \<Rightarrow> bool"
begin
definition "real_is_int (x::real) \<longleftrightarrow> x \<in> \<int>"
end
overloading real_is_rat \<equiv> "is_rat :: real \<Rightarrow> bool"
begin
definition "real_is_rat (x::real) \<longleftrightarrow> x \<in> \<rat>"
end
consts
to_int :: "'a \<Rightarrow> int"
to_rat :: "'a \<Rightarrow> rat"
to_real :: "'a \<Rightarrow> real"
overloading rat_to_int \<equiv> "to_int :: rat \<Rightarrow> int"
begin
definition "rat_to_int (q::rat) = \<lfloor>q\<rfloor>"
end
overloading real_to_int \<equiv> "to_int :: real \<Rightarrow> int"
begin
definition "real_to_int (x::real) = \<lfloor>x\<rfloor>"
end
overloading int_to_rat \<equiv> "to_rat :: int \<Rightarrow> rat"
begin
definition "int_to_rat (n::int) = (of_int n::rat)"
end
overloading real_to_rat \<equiv> "to_rat :: real \<Rightarrow> rat"
begin
definition "real_to_rat (x::real) = (inv of_rat x::rat)"
end
overloading int_to_real \<equiv> "to_real :: int \<Rightarrow> real"
begin
definition "int_to_real (n::int) = real_of_int n"
end
overloading rat_to_real \<equiv> "to_real :: rat \<Rightarrow> real"
begin
definition "rat_to_real (x::rat) = (of_rat x::real)"
end
declare
rat_is_int_def [simp]
real_is_int_def [simp]
real_is_rat_def [simp]
rat_to_int_def [simp]
real_to_int_def [simp]
int_to_rat_def [simp]
real_to_rat_def [simp]
int_to_real_def [simp]
rat_to_real_def [simp]
lemma to_rat_is_int [intro, simp]: "is_int (to_rat (n::int))"
by (metis int_to_rat_def rat_is_int_def)
lemma to_real_is_int [intro, simp]: "is_int (to_real (n::int))"
by (metis Ints_of_int int_to_real_def real_is_int_def)
lemma to_real_is_rat [intro, simp]: "is_rat (to_real (q::rat))"
by (metis Rats_of_rat rat_to_real_def real_is_rat_def)
lemma inj_of_rat [intro, simp]: "inj (of_rat::rat\<Rightarrow>real)"
by (metis injI of_rat_eq_iff)
end