(* Author: Gerwin Klein *)
theory Compiler2
imports Compiler
begin
section {* Compiler Correctness, Reverse Direction *}
subsection {* Definitions *}
text {* Execution in @{term n} steps for simpler induction *}
primrec
exec_n :: "instr list \<Rightarrow> config \<Rightarrow> nat \<Rightarrow> config \<Rightarrow> bool"
("_/ \<turnstile> (_ \<rightarrow>^_/ _)" [65,0,1000,55] 55)
where
"P \<turnstile> c \<rightarrow>^0 c' = (c'=c)" |
"P \<turnstile> c \<rightarrow>^(Suc n) c'' = (\<exists>c'. (P \<turnstile> c \<rightarrow> c') \<and> P \<turnstile> c' \<rightarrow>^n c'')"
text {* The possible successor PCs of an instruction at position @{term n} *}
text_raw{*\snip{isuccsdef}{0}{1}{% *}
definition
"isuccs i n \<equiv> case i of
JMP j \<Rightarrow> {n + 1 + j}
| JMPLESS j \<Rightarrow> {n + 1 + j, n + 1}
| JMPGE j \<Rightarrow> {n + 1 + j, n + 1}
| _ \<Rightarrow> {n +1}"
text_raw{*}%endsnip*}
text {* The possible successors PCs of an instruction list *}
definition
succs :: "instr list \<Rightarrow> int \<Rightarrow> int set" where
"succs P n = {s. \<exists>i::int. 0 \<le> i \<and> i < size P \<and> s \<in> isuccs (P!!i) (n+i)}"
text {* Possible exit PCs of a program *}
definition
"exits P = succs P 0 - {0..< size P}"
subsection {* Basic properties of @{term exec_n} *}
lemma exec_n_exec:
"P \<turnstile> c \<rightarrow>^n c' \<Longrightarrow> P \<turnstile> c \<rightarrow>* c'"
by (induct n arbitrary: c) auto
lemma exec_0 [intro!]: "P \<turnstile> c \<rightarrow>^0 c" by simp
lemma exec_Suc:
"\<lbrakk> P \<turnstile> c \<rightarrow> c'; P \<turnstile> c' \<rightarrow>^n c'' \<rbrakk> \<Longrightarrow> P \<turnstile> c \<rightarrow>^(Suc n) c''"
by (fastforce simp del: split_paired_Ex)
lemma exec_exec_n:
"P \<turnstile> c \<rightarrow>* c' \<Longrightarrow> \<exists>n. P \<turnstile> c \<rightarrow>^n c'"
by (induct rule: star.induct) (auto intro: exec_Suc)
lemma exec_eq_exec_n:
"(P \<turnstile> c \<rightarrow>* c') = (\<exists>n. P \<turnstile> c \<rightarrow>^n c')"
by (blast intro: exec_exec_n exec_n_exec)
lemma exec_n_Nil [simp]:
"[] \<turnstile> c \<rightarrow>^k c' = (c' = c \<and> k = 0)"
by (induct k) (auto simp: exec1_def)
lemma exec1_exec_n [intro!]:
"P \<turnstile> c \<rightarrow> c' \<Longrightarrow> P \<turnstile> c \<rightarrow>^1 c'"
by (cases c') simp
subsection {* Concrete symbolic execution steps *}
lemma exec_n_step:
"n \<noteq> n' \<Longrightarrow>
P \<turnstile> (n,stk,s) \<rightarrow>^k (n',stk',s') =
(\<exists>c. P \<turnstile> (n,stk,s) \<rightarrow> c \<and> P \<turnstile> c \<rightarrow>^(k - 1) (n',stk',s') \<and> 0 < k)"
by (cases k) auto
lemma exec1_end:
"size P <= fst c \<Longrightarrow> \<not> P \<turnstile> c \<rightarrow> c'"
by (auto simp: exec1_def)
lemma exec_n_end:
"size P <= (n::int) \<Longrightarrow>
P \<turnstile> (n,s,stk) \<rightarrow>^k (n',s',stk') = (n' = n \<and> stk'=stk \<and> s'=s \<and> k =0)"
by (cases k) (auto simp: exec1_end)
lemmas exec_n_simps = exec_n_step exec_n_end
subsection {* Basic properties of @{term succs} *}
lemma succs_simps [simp]:
"succs [ADD] n = {n + 1}"
"succs [LOADI v] n = {n + 1}"
"succs [LOAD x] n = {n + 1}"
"succs [STORE x] n = {n + 1}"
"succs [JMP i] n = {n + 1 + i}"
"succs [JMPGE i] n = {n + 1 + i, n + 1}"
"succs [JMPLESS i] n = {n + 1 + i, n + 1}"
by (auto simp: succs_def isuccs_def)
lemma succs_empty [iff]: "succs [] n = {}"
by (simp add: succs_def)
lemma succs_Cons:
"succs (x#xs) n = isuccs x n \<union> succs xs (1+n)" (is "_ = ?x \<union> ?xs")
proof
let ?isuccs = "\<lambda>p P n i::int. 0 \<le> i \<and> i < size P \<and> p \<in> isuccs (P!!i) (n+i)"
{ fix p assume "p \<in> succs (x#xs) n"
then obtain i::int where isuccs: "?isuccs p (x#xs) n i"
unfolding succs_def by auto
have "p \<in> ?x \<union> ?xs"
proof cases
assume "i = 0" with isuccs show ?thesis by simp
next
assume "i \<noteq> 0"
with isuccs
have "?isuccs p xs (1+n) (i - 1)" by auto
hence "p \<in> ?xs" unfolding succs_def by blast
thus ?thesis ..
qed
}
thus "succs (x#xs) n \<subseteq> ?x \<union> ?xs" ..
{ fix p assume "p \<in> ?x \<or> p \<in> ?xs"
hence "p \<in> succs (x#xs) n"
proof
assume "p \<in> ?x" thus ?thesis by (fastforce simp: succs_def)
next
assume "p \<in> ?xs"
then obtain i where "?isuccs p xs (1+n) i"
unfolding succs_def by auto
hence "?isuccs p (x#xs) n (1+i)"
by (simp add: algebra_simps)
thus ?thesis unfolding succs_def by blast
qed
}
thus "?x \<union> ?xs \<subseteq> succs (x#xs) n" by blast
qed
lemma succs_iexec1:
assumes "c' = iexec (P!!i) (i,s,stk)" "0 \<le> i" "i < size P"
shows "fst c' \<in> succs P 0"
using assms by (auto simp: succs_def isuccs_def split: instr.split)
lemma succs_shift:
"(p - n \<in> succs P 0) = (p \<in> succs P n)"
by (fastforce simp: succs_def isuccs_def split: instr.split)
lemma inj_op_plus [simp]:
"inj (op + (i::int))"
by (metis add_minus_cancel inj_on_inverseI)
lemma succs_set_shift [simp]:
"op + i ` succs xs 0 = succs xs i"
by (force simp: succs_shift [where n=i, symmetric] intro: set_eqI)
lemma succs_append [simp]:
"succs (xs @ ys) n = succs xs n \<union> succs ys (n + size xs)"
by (induct xs arbitrary: n) (auto simp: succs_Cons algebra_simps)
lemma exits_append [simp]:
"exits (xs @ ys) = exits xs \<union> (op + (size xs)) ` exits ys -
{0..<size xs + size ys}"
by (auto simp: exits_def image_set_diff)
lemma exits_single:
"exits [x] = isuccs x 0 - {0}"
by (auto simp: exits_def succs_def)
lemma exits_Cons:
"exits (x # xs) = (isuccs x 0 - {0}) \<union> (op + 1) ` exits xs -
{0..<1 + size xs}"
using exits_append [of "[x]" xs]
by (simp add: exits_single)
lemma exits_empty [iff]: "exits [] = {}" by (simp add: exits_def)
lemma exits_simps [simp]:
"exits [ADD] = {1}"
"exits [LOADI v] = {1}"
"exits [LOAD x] = {1}"
"exits [STORE x] = {1}"
"i \<noteq> -1 \<Longrightarrow> exits [JMP i] = {1 + i}"
"i \<noteq> -1 \<Longrightarrow> exits [JMPGE i] = {1 + i, 1}"
"i \<noteq> -1 \<Longrightarrow> exits [JMPLESS i] = {1 + i, 1}"
by (auto simp: exits_def)
lemma acomp_succs [simp]:
"succs (acomp a) n = {n + 1 .. n + size (acomp a)}"
by (induct a arbitrary: n) auto
lemma acomp_size:
"(1::int) \<le> size (acomp a)"
by (induct a) auto
lemma acomp_exits [simp]:
"exits (acomp a) = {size (acomp a)}"
by (auto simp: exits_def acomp_size)
lemma bcomp_succs:
"0 \<le> i \<Longrightarrow>
succs (bcomp b c i) n \<subseteq> {n .. n + size (bcomp b c i)}
\<union> {n + i + size (bcomp b c i)}"
proof (induction b arbitrary: c i n)
case (And b1 b2)
from And.prems
show ?case
by (cases c)
(auto dest: And.IH(1) [THEN subsetD, rotated]
And.IH(2) [THEN subsetD, rotated])
qed auto
lemmas bcomp_succsD [dest!] = bcomp_succs [THEN subsetD, rotated]
lemma bcomp_exits:
fixes i :: int
shows
"0 \<le> i \<Longrightarrow>
exits (bcomp b c i) \<subseteq> {size (bcomp b c i), i + size (bcomp b c i)}"
by (auto simp: exits_def)
lemma bcomp_exitsD [dest!]:
"p \<in> exits (bcomp b c i) \<Longrightarrow> 0 \<le> i \<Longrightarrow>
p = size (bcomp b c i) \<or> p = i + size (bcomp b c i)"
using bcomp_exits by auto
lemma ccomp_succs:
"succs (ccomp c) n \<subseteq> {n..n + size (ccomp c)}"
proof (induction c arbitrary: n)
case SKIP thus ?case by simp
next
case Assign thus ?case by simp
next
case (Seq c1 c2)
from Seq.prems
show ?case
by (fastforce dest: Seq.IH [THEN subsetD])
next
case (If b c1 c2)
from If.prems
show ?case
by (auto dest!: If.IH [THEN subsetD] simp: isuccs_def succs_Cons)
next
case (While b c)
from While.prems
show ?case by (auto dest!: While.IH [THEN subsetD])
qed
lemma ccomp_exits:
"exits (ccomp c) \<subseteq> {size (ccomp c)}"
using ccomp_succs [of c 0] by (auto simp: exits_def)
lemma ccomp_exitsD [dest!]:
"p \<in> exits (ccomp c) \<Longrightarrow> p = size (ccomp c)"
using ccomp_exits by auto
subsection {* Splitting up machine executions *}
lemma exec1_split:
fixes i j :: int
shows
"P @ c @ P' \<turnstile> (size P + i, s) \<rightarrow> (j,s') \<Longrightarrow> 0 \<le> i \<Longrightarrow> i < size c \<Longrightarrow>
c \<turnstile> (i,s) \<rightarrow> (j - size P, s')"
by (auto split: instr.splits simp: exec1_def)
lemma exec_n_split:
fixes i j :: int
assumes "P @ c @ P' \<turnstile> (size P + i, s) \<rightarrow>^n (j, s')"
"0 \<le> i" "i < size c"
"j \<notin> {size P ..< size P + size c}"
shows "\<exists>s'' (i'::int) k m.
c \<turnstile> (i, s) \<rightarrow>^k (i', s'') \<and>
i' \<in> exits c \<and>
P @ c @ P' \<turnstile> (size P + i', s'') \<rightarrow>^m (j, s') \<and>
n = k + m"
using assms proof (induction n arbitrary: i j s)
case 0
thus ?case by simp
next
case (Suc n)
have i: "0 \<le> i" "i < size c" by fact+
from Suc.prems
have j: "\<not> (size P \<le> j \<and> j < size P + size c)" by simp
from Suc.prems
obtain i0 s0 where
step: "P @ c @ P' \<turnstile> (size P + i, s) \<rightarrow> (i0,s0)" and
rest: "P @ c @ P' \<turnstile> (i0,s0) \<rightarrow>^n (j, s')"
by clarsimp
from step i
have c: "c \<turnstile> (i,s) \<rightarrow> (i0 - size P, s0)" by (rule exec1_split)
have "i0 = size P + (i0 - size P) " by simp
then obtain j0::int where j0: "i0 = size P + j0" ..
note split_paired_Ex [simp del]
{ assume "j0 \<in> {0 ..< size c}"
with j0 j rest c
have ?case
by (fastforce dest!: Suc.IH intro!: exec_Suc)
} moreover {
assume "j0 \<notin> {0 ..< size c}"
moreover
from c j0 have "j0 \<in> succs c 0"
by (auto dest: succs_iexec1 simp: exec1_def simp del: iexec.simps)
ultimately
have "j0 \<in> exits c" by (simp add: exits_def)
with c j0 rest
have ?case by fastforce
}
ultimately
show ?case by cases
qed
lemma exec_n_drop_right:
fixes j :: int
assumes "c @ P' \<turnstile> (0, s) \<rightarrow>^n (j, s')" "j \<notin> {0..<size c}"
shows "\<exists>s'' i' k m.
(if c = [] then s'' = s \<and> i' = 0 \<and> k = 0
else c \<turnstile> (0, s) \<rightarrow>^k (i', s'') \<and>
i' \<in> exits c) \<and>
c @ P' \<turnstile> (i', s'') \<rightarrow>^m (j, s') \<and>
n = k + m"
using assms
by (cases "c = []")
(auto dest: exec_n_split [where P="[]", simplified])
text {*
Dropping the left context of a potentially incomplete execution of @{term c}.
*}
lemma exec1_drop_left:
fixes i n :: int
assumes "P1 @ P2 \<turnstile> (i, s, stk) \<rightarrow> (n, s', stk')" and "size P1 \<le> i"
shows "P2 \<turnstile> (i - size P1, s, stk) \<rightarrow> (n - size P1, s', stk')"
proof -
have "i = size P1 + (i - size P1)" by simp
then obtain i' :: int where "i = size P1 + i'" ..
moreover
have "n = size P1 + (n - size P1)" by simp
then obtain n' :: int where "n = size P1 + n'" ..
ultimately
show ?thesis using assms
by (clarsimp simp: exec1_def simp del: iexec.simps)
qed
lemma exec_n_drop_left:
fixes i n :: int
assumes "P @ P' \<turnstile> (i, s, stk) \<rightarrow>^k (n, s', stk')"
"size P \<le> i" "exits P' \<subseteq> {0..}"
shows "P' \<turnstile> (i - size P, s, stk) \<rightarrow>^k (n - size P, s', stk')"
using assms proof (induction k arbitrary: i s stk)
case 0 thus ?case by simp
next
case (Suc k)
from Suc.prems
obtain i' s'' stk'' where
step: "P @ P' \<turnstile> (i, s, stk) \<rightarrow> (i', s'', stk'')" and
rest: "P @ P' \<turnstile> (i', s'', stk'') \<rightarrow>^k (n, s', stk')"
by auto
from step `size P \<le> i`
have "P' \<turnstile> (i - size P, s, stk) \<rightarrow> (i' - size P, s'', stk'')"
by (rule exec1_drop_left)
moreover
then have "i' - size P \<in> succs P' 0"
by (fastforce dest!: succs_iexec1 simp: exec1_def simp del: iexec.simps)
with `exits P' \<subseteq> {0..}`
have "size P \<le> i'" by (auto simp: exits_def)
from rest this `exits P' \<subseteq> {0..}`
have "P' \<turnstile> (i' - size P, s'', stk'') \<rightarrow>^k (n - size P, s', stk')"
by (rule Suc.IH)
ultimately
show ?case by auto
qed
lemmas exec_n_drop_Cons =
exec_n_drop_left [where P="[instr]", simplified] for instr
definition
"closed P \<longleftrightarrow> exits P \<subseteq> {size P}"
lemma ccomp_closed [simp, intro!]: "closed (ccomp c)"
using ccomp_exits by (auto simp: closed_def)
lemma acomp_closed [simp, intro!]: "closed (acomp c)"
by (simp add: closed_def)
lemma exec_n_split_full:
fixes j :: int
assumes exec: "P @ P' \<turnstile> (0,s,stk) \<rightarrow>^k (j, s', stk')"
assumes P: "size P \<le> j"
assumes closed: "closed P"
assumes exits: "exits P' \<subseteq> {0..}"
shows "\<exists>k1 k2 s'' stk''. P \<turnstile> (0,s,stk) \<rightarrow>^k1 (size P, s'', stk'') \<and>
P' \<turnstile> (0,s'',stk'') \<rightarrow>^k2 (j - size P, s', stk')"
proof (cases "P")
case Nil with exec
show ?thesis by fastforce
next
case Cons
hence "0 < size P" by simp
with exec P closed
obtain k1 k2 s'' stk'' where
1: "P \<turnstile> (0,s,stk) \<rightarrow>^k1 (size P, s'', stk'')" and
2: "P @ P' \<turnstile> (size P,s'',stk'') \<rightarrow>^k2 (j, s', stk')"
by (auto dest!: exec_n_split [where P="[]" and i=0, simplified]
simp: closed_def)
moreover
have "j = size P + (j - size P)" by simp
then obtain j0 :: int where "j = size P + j0" ..
ultimately
show ?thesis using exits
by (fastforce dest: exec_n_drop_left)
qed
subsection {* Correctness theorem *}
lemma acomp_neq_Nil [simp]:
"acomp a \<noteq> []"
by (induct a) auto
lemma acomp_exec_n [dest!]:
"acomp a \<turnstile> (0,s,stk) \<rightarrow>^n (size (acomp a),s',stk') \<Longrightarrow>
s' = s \<and> stk' = aval a s#stk"
proof (induction a arbitrary: n s' stk stk')
case (Plus a1 a2)
let ?sz = "size (acomp a1) + (size (acomp a2) + 1)"
from Plus.prems
have "acomp a1 @ acomp a2 @ [ADD] \<turnstile> (0,s,stk) \<rightarrow>^n (?sz, s', stk')"
by (simp add: algebra_simps)
then obtain n1 s1 stk1 n2 s2 stk2 n3 where
"acomp a1 \<turnstile> (0,s,stk) \<rightarrow>^n1 (size (acomp a1), s1, stk1)"
"acomp a2 \<turnstile> (0,s1,stk1) \<rightarrow>^n2 (size (acomp a2), s2, stk2)"
"[ADD] \<turnstile> (0,s2,stk2) \<rightarrow>^n3 (1, s', stk')"
by (auto dest!: exec_n_split_full)
thus ?case by (fastforce dest: Plus.IH simp: exec_n_simps exec1_def)
qed (auto simp: exec_n_simps exec1_def)
lemma bcomp_split:
fixes i j :: int
assumes "bcomp b c i @ P' \<turnstile> (0, s, stk) \<rightarrow>^n (j, s', stk')"
"j \<notin> {0..<size (bcomp b c i)}" "0 \<le> i"
shows "\<exists>s'' stk'' (i'::int) k m.
bcomp b c i \<turnstile> (0, s, stk) \<rightarrow>^k (i', s'', stk'') \<and>
(i' = size (bcomp b c i) \<or> i' = i + size (bcomp b c i)) \<and>
bcomp b c i @ P' \<turnstile> (i', s'', stk'') \<rightarrow>^m (j, s', stk') \<and>
n = k + m"
using assms by (cases "bcomp b c i = []") (fastforce dest!: exec_n_drop_right)+
lemma bcomp_exec_n [dest]:
fixes i j :: int
assumes "bcomp b c j \<turnstile> (0, s, stk) \<rightarrow>^n (i, s', stk')"
"size (bcomp b c j) \<le> i" "0 \<le> j"
shows "i = size(bcomp b c j) + (if c = bval b s then j else 0) \<and>
s' = s \<and> stk' = stk"
using assms proof (induction b arbitrary: c j i n s' stk')
case Bc thus ?case
by (simp split: split_if_asm add: exec_n_simps exec1_def)
next
case (Not b)
from Not.prems show ?case
by (fastforce dest!: Not.IH)
next
case (And b1 b2)
let ?b2 = "bcomp b2 c j"
let ?m = "if c then size ?b2 else size ?b2 + j"
let ?b1 = "bcomp b1 False ?m"
have j: "size (bcomp (And b1 b2) c j) \<le> i" "0 \<le> j" by fact+
from And.prems
obtain s'' stk'' and i'::int and k m where
b1: "?b1 \<turnstile> (0, s, stk) \<rightarrow>^k (i', s'', stk'')"
"i' = size ?b1 \<or> i' = ?m + size ?b1" and
b2: "?b2 \<turnstile> (i' - size ?b1, s'', stk'') \<rightarrow>^m (i - size ?b1, s', stk')"
by (auto dest!: bcomp_split dest: exec_n_drop_left)
from b1 j
have "i' = size ?b1 + (if \<not>bval b1 s then ?m else 0) \<and> s'' = s \<and> stk'' = stk"
by (auto dest!: And.IH)
with b2 j
show ?case
by (fastforce dest!: And.IH simp: exec_n_end split: split_if_asm)
next
case Less
thus ?case by (auto dest!: exec_n_split_full simp: exec_n_simps exec1_def) (* takes time *)
qed
lemma ccomp_empty [elim!]:
"ccomp c = [] \<Longrightarrow> (c,s) \<Rightarrow> s"
by (induct c) auto
declare assign_simp [simp]
lemma ccomp_exec_n:
"ccomp c \<turnstile> (0,s,stk) \<rightarrow>^n (size(ccomp c),t,stk')
\<Longrightarrow> (c,s) \<Rightarrow> t \<and> stk'=stk"
proof (induction c arbitrary: s t stk stk' n)
case SKIP
thus ?case by auto
next
case (Assign x a)
thus ?case
by simp (fastforce dest!: exec_n_split_full simp: exec_n_simps exec1_def)
next
case (Seq c1 c2)
thus ?case by (fastforce dest!: exec_n_split_full)
next
case (If b c1 c2)
note If.IH [dest!]
let ?if = "IF b THEN c1 ELSE c2"
let ?cs = "ccomp ?if"
let ?bcomp = "bcomp b False (size (ccomp c1) + 1)"
from `?cs \<turnstile> (0,s,stk) \<rightarrow>^n (size ?cs,t,stk')`
obtain i' :: int and k m s'' stk'' where
cs: "?cs \<turnstile> (i',s'',stk'') \<rightarrow>^m (size ?cs,t,stk')" and
"?bcomp \<turnstile> (0,s,stk) \<rightarrow>^k (i', s'', stk'')"
"i' = size ?bcomp \<or> i' = size ?bcomp + size (ccomp c1) + 1"
by (auto dest!: bcomp_split)
hence i':
"s''=s" "stk'' = stk"
"i' = (if bval b s then size ?bcomp else size ?bcomp+size(ccomp c1)+1)"
by auto
with cs have cs':
"ccomp c1@JMP (size (ccomp c2))#ccomp c2 \<turnstile>
(if bval b s then 0 else size (ccomp c1)+1, s, stk) \<rightarrow>^m
(1 + size (ccomp c1) + size (ccomp c2), t, stk')"
by (fastforce dest: exec_n_drop_left simp: exits_Cons isuccs_def algebra_simps)
show ?case
proof (cases "bval b s")
case True with cs'
show ?thesis
by simp
(fastforce dest: exec_n_drop_right
split: split_if_asm
simp: exec_n_simps exec1_def)
next
case False with cs'
show ?thesis
by (auto dest!: exec_n_drop_Cons exec_n_drop_left
simp: exits_Cons isuccs_def)
qed
next
case (While b c)
from While.prems
show ?case
proof (induction n arbitrary: s rule: nat_less_induct)
case (1 n)
{ assume "\<not> bval b s"
with "1.prems"
have ?case
by simp
(fastforce dest!: bcomp_exec_n bcomp_split
simp: exec_n_simps)
} moreover {
assume b: "bval b s"
let ?c0 = "WHILE b DO c"
let ?cs = "ccomp ?c0"
let ?bs = "bcomp b False (size (ccomp c) + 1)"
let ?jmp = "[JMP (-((size ?bs + size (ccomp c) + 1)))]"
from "1.prems" b
obtain k where
cs: "?cs \<turnstile> (size ?bs, s, stk) \<rightarrow>^k (size ?cs, t, stk')" and
k: "k \<le> n"
by (fastforce dest!: bcomp_split)
have ?case
proof cases
assume "ccomp c = []"
with cs k
obtain m where
"?cs \<turnstile> (0,s,stk) \<rightarrow>^m (size (ccomp ?c0), t, stk')"
"m < n"
by (auto simp: exec_n_step [where k=k] exec1_def)
with "1.IH"
show ?case by blast
next
assume "ccomp c \<noteq> []"
with cs
obtain m m' s'' stk'' where
c: "ccomp c \<turnstile> (0, s, stk) \<rightarrow>^m' (size (ccomp c), s'', stk'')" and
rest: "?cs \<turnstile> (size ?bs + size (ccomp c), s'', stk'') \<rightarrow>^m
(size ?cs, t, stk')" and
m: "k = m + m'"
by (auto dest: exec_n_split [where i=0, simplified])
from c
have "(c,s) \<Rightarrow> s''" and stk: "stk'' = stk"
by (auto dest!: While.IH)
moreover
from rest m k stk
obtain k' where
"?cs \<turnstile> (0, s'', stk) \<rightarrow>^k' (size ?cs, t, stk')"
"k' < n"
by (auto simp: exec_n_step [where k=m] exec1_def)
with "1.IH"
have "(?c0, s'') \<Rightarrow> t \<and> stk' = stk" by blast
ultimately
show ?case using b by blast
qed
}
ultimately show ?case by cases
qed
qed
theorem ccomp_exec:
"ccomp c \<turnstile> (0,s,stk) \<rightarrow>* (size(ccomp c),t,stk') \<Longrightarrow> (c,s) \<Rightarrow> t"
by (auto dest: exec_exec_n ccomp_exec_n)
corollary ccomp_sound:
"ccomp c \<turnstile> (0,s,stk) \<rightarrow>* (size(ccomp c),t,stk) \<longleftrightarrow> (c,s) \<Rightarrow> t"
by (blast intro!: ccomp_exec ccomp_bigstep)
end