(*  Title: 	HOLCF/cfun1.thy
    ID:         $Id$
    Author: 	Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen
Definition of the type ->  of continuous functions
*)
Cfun1 = Cont +
(* new type of continuous functions *)
types "->" 2        (infixr 5)
arities "->" :: (pcpo,pcpo)term		(* No properties for ->'s range *)
consts  
	Cfun	:: "('a => 'b)set"
	fapp	:: "('a -> 'b)=>('a => 'b)"	("(_[_])" [11,0] 1000)
						(* usually Rep_Cfun *)
						(* application      *)
	fabs	:: "('a => 'b)=>('a -> 'b)"	(binder "LAM " 10)
						(* usually Abs_Cfun *)
						(* abstraction      *)
	less_cfun :: "[('a -> 'b),('a -> 'b)]=>bool"
rules 
  Cfun_def	"Cfun == {f. contX(f)}"
  (*faking a type definition... *)
  (* -> is isomorphic to Cfun   *)
  Rep_Cfun		"fapp(fo):Cfun"
  Rep_Cfun_inverse	"fabs(fapp(fo)) = fo"
  Abs_Cfun_inverse	"f:Cfun ==> fapp(fabs(f))=f"
  (*defining the abstract constants*)
  less_cfun_def		"less_cfun(fo1,fo2) == ( fapp(fo1) << fapp(fo2) )"
end