(* Title: HOL/Option.thy
Author: Folklore
*)
header {* Datatype option *}
theory Option
imports Datatype
begin
datatype 'a option = None | Some 'a
lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)"
by (induct x) auto
lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)"
by (induct x) auto
text{*Although it may appear that both of these equalities are helpful
only when applied to assumptions, in practice it seems better to give
them the uniform iff attribute. *}
lemma option_caseE:
assumes c: "(case x of None => P | Some y => Q y)"
obtains
(None) "x = None" and P
| (Some) y where "x = Some y" and "Q y"
using c by (cases x) simp_all
lemma insert_None_conv_UNIV: "insert None (range Some) = UNIV"
by (rule set_ext, case_tac x) auto
lemma inj_Some [simp]: "inj_on Some A"
by (rule inj_onI) simp
subsubsection {* Operations *}
primrec the :: "'a option => 'a" where
"the (Some x) = x"
primrec set :: "'a option => 'a set" where
"set None = {}" |
"set (Some x) = {x}"
lemma ospec [dest]: "(ALL x:set A. P x) ==> A = Some x ==> P x"
by simp
declaration {* fn _ =>
Classical.map_cs (fn cs => cs addSD2 ("ospec", thm "ospec"))
*}
lemma elem_set [iff]: "(x : set xo) = (xo = Some x)"
by (cases xo) auto
lemma set_empty_eq [simp]: "(set xo = {}) = (xo = None)"
by (cases xo) auto
definition
map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"
where
[code del]: "map = (%f y. case y of None => None | Some x => Some (f x))"
lemma option_map_None [simp, code]: "map f None = None"
by (simp add: map_def)
lemma option_map_Some [simp, code]: "map f (Some x) = Some (f x)"
by (simp add: map_def)
lemma option_map_is_None [iff]:
"(map f opt = None) = (opt = None)"
by (simp add: map_def split add: option.split)
lemma option_map_eq_Some [iff]:
"(map f xo = Some y) = (EX z. xo = Some z & f z = y)"
by (simp add: map_def split add: option.split)
lemma option_map_comp:
"map f (map g opt) = map (f o g) opt"
by (simp add: map_def split add: option.split)
lemma option_map_o_sum_case [simp]:
"map f o sum_case g h = sum_case (map f o g) (map f o h)"
by (rule ext) (simp split: sum.split)
hide (open) const set map
subsubsection {* Code generator setup *}
definition
is_none :: "'a option \<Rightarrow> bool" where
is_none_none [code post, symmetric, code inline]: "is_none x \<longleftrightarrow> x = None"
lemma is_none_code [code]:
shows "is_none None \<longleftrightarrow> True"
and "is_none (Some x) \<longleftrightarrow> False"
unfolding is_none_none [symmetric] by simp_all
hide (open) const is_none
code_type option
(SML "_ option")
(OCaml "_ option")
(Haskell "Maybe _")
code_const None and Some
(SML "NONE" and "SOME")
(OCaml "None" and "Some _")
(Haskell "Nothing" and "Just")
code_instance option :: eq
(Haskell -)
code_const "eq_class.eq \<Colon> 'a\<Colon>eq option \<Rightarrow> 'a option \<Rightarrow> bool"
(Haskell infixl 4 "==")
code_reserved SML
option NONE SOME
code_reserved OCaml
option None Some
end