| author | paulson <lp15@cam.ac.uk> |
| Tue, 30 May 2023 14:24:09 +0100 | |
| changeset 78128 | 3d2db8057b9f |
| parent 67613 | ce654b0e6d69 |
| permissions | -rw-r--r-- |
(*<*) theory Plus imports Main begin (*>*) text\<open>\noindent Define the following addition function\<close> primrec add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "add m 0 = m" | "add m (Suc n) = add (Suc m) n" text\<open>\noindent and prove\<close> (*<*) lemma [simp]: "\<forall>m. add m n = m+n" apply(induct_tac n) by(auto) (*>*) lemma "add m n = m+n" (*<*) by(simp) end (*>*)