sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
"num" syntax (still with "#"), Numeral0, Numeral1;
(* Title: HOL/MicroJava/J/State.thy
ID: $Id$
Author: David von Oheimb
Copyright 1999 Technische Universitaet Muenchen
*)
header "Program State"
theory State = TypeRel + Value:
types fields_
= "(vname \<times> cname \<leadsto> val)" (* field name, defining class, value *)
obj = "cname \<times> fields_" (* class instance with class name and fields *)
constdefs
obj_ty :: "obj => ty"
"obj_ty obj == Class (fst obj)"
init_vars :: "('a \<times> ty) list => ('a \<leadsto> val)"
"init_vars == map_of o map (\<lambda>(n,T). (n,default_val T))"
datatype xcpt (* exceptions *)
= NullPointer
| ClassCast
| OutOfMemory
types aheap = "loc \<leadsto> obj" (** "heap" used in a translation below **)
locals = "vname \<leadsto> val"
state (* simple state, i.e. variable contents *)
= "aheap \<times> locals"
(* heap, local parameter including This *)
xstate (* state including exception information *)
= "xcpt option \<times> state"
syntax
heap :: "state => aheap"
locals :: "state => locals"
Norm :: "state => xstate"
translations
"heap" => "fst"
"locals" => "snd"
"Norm s" == "(None,s)"
constdefs
new_Addr :: "aheap => loc \<times> xcpt option"
"new_Addr h == SOME (a,x). (h a = None \<and> x = None) | x = Some OutOfMemory"
raise_if :: "bool => xcpt => xcpt option => xcpt option"
"raise_if c x xo == if c \<and> (xo = None) then Some x else xo"
np :: "val => xcpt option => xcpt option"
"np v == raise_if (v = Null) NullPointer"
c_hupd :: "aheap => xstate => xstate"
"c_hupd h'== \<lambda>(xo,(h,l)). if xo = None then (None,(h',l)) else (xo,(h,l))"
cast_ok :: "'c prog => cname => aheap => val => bool"
"cast_ok G C h v == v = Null \<or> G\<turnstile>obj_ty (the (h (the_Addr v)))\<preceq> Class C"
lemma obj_ty_def2 [simp]: "obj_ty (C,fs) = Class C"
apply (unfold obj_ty_def)
apply (simp (no_asm))
done
lemma new_AddrD:
"(a,x) = new_Addr h ==> h a = None \<and> x = None | x = Some OutOfMemory"
apply (unfold new_Addr_def)
apply(simp add: Pair_fst_snd_eq Eps_split)
apply(rule someI)
apply(rule disjI2)
apply(rule_tac "r" = "snd (?a,Some OutOfMemory)" in trans)
apply auto
done
lemma raise_if_True [simp]: "raise_if True x y \<noteq> None"
apply (unfold raise_if_def)
apply auto
done
lemma raise_if_False [simp]: "raise_if False x y = y"
apply (unfold raise_if_def)
apply auto
done
lemma raise_if_Some [simp]: "raise_if c x (Some y) \<noteq> None"
apply (unfold raise_if_def)
apply auto
done
lemma raise_if_Some2 [simp]: "raise_if c z (if x = None then Some y else x) \<noteq> None"
apply (unfold raise_if_def)
apply(induct_tac "x")
apply auto
done
lemma raise_if_SomeD [rule_format (no_asm)]:
"raise_if c x y = Some z \<longrightarrow> c \<and> Some z = Some x | y = Some z"
apply (unfold raise_if_def)
apply auto
done
lemma raise_if_NoneD [rule_format (no_asm)]: "raise_if c x y = None --> \<not> c \<and> y = None"
apply (unfold raise_if_def)
apply auto
done
lemma np_NoneD [rule_format (no_asm)]: "np a' x' = None --> x' = None \<and> a' \<noteq> Null"
apply (unfold np_def raise_if_def)
apply auto
done
lemma np_None [rule_format (no_asm), simp]: "a' \<noteq> Null --> np a' x' = x'"
apply (unfold np_def raise_if_def)
apply auto
done
lemma np_Some [simp]: "np a' (Some xc) = Some xc"
apply (unfold np_def raise_if_def)
apply auto
done
lemma np_Null [simp]: "np Null None = Some NullPointer"
apply (unfold np_def raise_if_def)
apply auto
done
lemma np_Addr [simp]: "np (Addr a) None = None"
apply (unfold np_def raise_if_def)
apply auto
done
lemma np_raise_if [simp]: "(np Null (raise_if c xc None)) =
Some (if c then xc else NullPointer)"
apply (unfold raise_if_def)
apply (simp (no_asm))
done
end