src/HOL/ex/BinEx.thy
author wenzelm
Fri, 05 Oct 2001 21:52:39 +0200
changeset 11701 3d51fbf81c17
parent 11637 647e6c84323c
child 11704 3c50a2cd6f00
permissions -rw-r--r--
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat, "num" syntax (still with "#"), Numeral0, Numeral1;

(*  Title:      HOL/ex/BinEx.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1998  University of Cambridge
*)

header {* Binary arithmetic examples *}

theory BinEx = Main:

subsection {* The Integers *}

text {* Addition *}

lemma "(# 13::int) + # 19 = # 32"
  by simp

lemma "(# 1234::int) + # 5678 = # 6912"
  by simp

lemma "(# 1359::int) + # -2468 = # -1109"
  by simp

lemma "(# 93746::int) + # -46375 = # 47371"
  by simp


text {* \medskip Negation *}

lemma "- (# 65745::int) = # -65745"
  by simp

lemma "- (# -54321::int) = # 54321"
  by simp


text {* \medskip Multiplication *}

lemma "(# 13::int) * # 19 = # 247"
  by simp

lemma "(# -84::int) * # 51 = # -4284"
  by simp

lemma "(# 255::int) * # 255 = # 65025"
  by simp

lemma "(# 1359::int) * # -2468 = # -3354012"
  by simp

lemma "(# 89::int) * # 10 \<noteq> # 889"
  by simp

lemma "(# 13::int) < # 18 - # 4"
  by simp

lemma "(# -345::int) < # -242 + # -100"
  by simp

lemma "(# 13557456::int) < # 18678654"
  by simp

lemma "(# 999999::int) \<le> (# 1000001 + Numeral1) - # 2"
  by simp

lemma "(# 1234567::int) \<le> # 1234567"
  by simp


text {* \medskip Quotient and Remainder *}

lemma "(# 10::int) div # 3 = # 3"
  by simp

lemma "(# 10::int) mod # 3 = Numeral1"
  by simp

text {* A negative divisor *}

lemma "(# 10::int) div # -3 = # -4"
  by simp

lemma "(# 10::int) mod # -3 = # -2"
  by simp

text {*
  A negative dividend\footnote{The definition agrees with mathematical
  convention but not with the hardware of most computers}
*}

lemma "(# -10::int) div # 3 = # -4"
  by simp

lemma "(# -10::int) mod # 3 = # 2"
  by simp

text {* A negative dividend \emph{and} divisor *}

lemma "(# -10::int) div # -3 = # 3"
  by simp

lemma "(# -10::int) mod # -3 = # -1"
  by simp

text {* A few bigger examples *}

lemma "(# 8452::int) mod # 3 = Numeral1"
  by simp

lemma "(# 59485::int) div # 434 = # 137"
  by simp

lemma "(# 1000006::int) mod # 10 = # 6"
  by simp


text {* \medskip Division by shifting *}

lemma "# 10000000 div # 2 = (# 5000000::int)"
  by simp

lemma "# 10000001 mod # 2 = (Numeral1::int)"
  by simp

lemma "# 10000055 div # 32 = (# 312501::int)"
  by simp

lemma "# 10000055 mod # 32 = (# 23::int)"
  by simp

lemma "# 100094 div # 144 = (# 695::int)"
  by simp

lemma "# 100094 mod # 144 = (# 14::int)"
  by simp


subsection {* The Natural Numbers *}

text {* Successor *}

lemma "Suc # 99999 = # 100000"
  by (simp add: Suc_nat_number_of)
    -- {* not a default rewrite since sometimes we want to have @{text "Suc #nnn"} *}


text {* \medskip Addition *}

lemma "(# 13::nat) + # 19 = # 32"
  by simp

lemma "(# 1234::nat) + # 5678 = # 6912"
  by simp

lemma "(# 973646::nat) + # 6475 = # 980121"
  by simp


text {* \medskip Subtraction *}

lemma "(# 32::nat) - # 14 = # 18"
  by simp

lemma "(# 14::nat) - # 15 = Numeral0"
  by simp

lemma "(# 14::nat) - # 1576644 = Numeral0"
  by simp

lemma "(# 48273776::nat) - # 3873737 = # 44400039"
  by simp


text {* \medskip Multiplication *}

lemma "(# 12::nat) * # 11 = # 132"
  by simp

lemma "(# 647::nat) * # 3643 = # 2357021"
  by simp


text {* \medskip Quotient and Remainder *}

lemma "(# 10::nat) div # 3 = # 3"
  by simp

lemma "(# 10::nat) mod # 3 = Numeral1"
  by simp

lemma "(# 10000::nat) div # 9 = # 1111"
  by simp

lemma "(# 10000::nat) mod # 9 = Numeral1"
  by simp

lemma "(# 10000::nat) div # 16 = # 625"
  by simp

lemma "(# 10000::nat) mod # 16 = Numeral0"
  by simp


text {* \medskip Testing the cancellation of complementary terms *}

lemma "y + (x + -x) = (Numeral0::int) + y"
  by simp

lemma "y + (-x + (- y + x)) = (Numeral0::int)"
  by simp

lemma "-x + (y + (- y + x)) = (Numeral0::int)"
  by simp

lemma "x + (x + (- x + (- x + (- y + - z)))) = (Numeral0::int) - y - z"
  by simp

lemma "x + x - x - x - y - z = (Numeral0::int) - y - z"
  by simp

lemma "x + y + z - (x + z) = y - (Numeral0::int)"
  by simp

lemma "x + (y + (y + (y + (-x + -x)))) = (Numeral0::int) + y - x + y + y"
  by simp

lemma "x + (y + (y + (y + (-y + -x)))) = y + (Numeral0::int) + y"
  by simp

lemma "x + y - x + z - x - y - z + x < (Numeral1::int)"
  by simp


subsection {* Normal form of bit strings *}

text {*
  Definition of normal form for proving that binary arithmetic on
  normalized operands yields normalized results.  Normal means no
  leading 0s on positive numbers and no leading 1s on negatives.
*}

consts normal :: "bin set"
inductive normal
  intros
    Pls [simp]: "Pls: normal"
    Min [simp]: "Min: normal"
    BIT_F [simp]: "w: normal ==> w \<noteq> Pls ==> w BIT False : normal"
    BIT_T [simp]: "w: normal ==> w \<noteq> Min ==> w BIT True : normal"

text {*
  \medskip Binary arithmetic on normalized operands yields normalized
  results.
*}

lemma normal_BIT_I [simp]: "w BIT b \<in> normal ==> w BIT b BIT c \<in> normal"
  apply (case_tac c)
   apply auto
  done

lemma normal_BIT_D: "w BIT b \<in> normal ==> w \<in> normal"
  apply (erule normal.cases)
     apply auto
  done

lemma NCons_normal [simp]: "w \<in> normal ==> NCons w b \<in> normal"
  apply (induct w)
    apply (auto simp add: NCons_Pls NCons_Min)
  done

lemma NCons_True: "NCons w True \<noteq> Pls"
  apply (induct w)
    apply auto
  done

lemma NCons_False: "NCons w False \<noteq> Min"
  apply (induct w)
    apply auto
  done

lemma bin_succ_normal [simp]: "w \<in> normal ==> bin_succ w \<in> normal"
  apply (erule normal.induct)
     apply (case_tac [4] w)
  apply (auto simp add: NCons_True bin_succ_BIT)
  done

lemma bin_pred_normal [simp]: "w \<in> normal ==> bin_pred w \<in> normal"
  apply (erule normal.induct)
     apply (case_tac [3] w)
  apply (auto simp add: NCons_False bin_pred_BIT)
  done

lemma bin_add_normal [rule_format]:
  "w \<in> normal --> (\<forall>z. z \<in> normal --> bin_add w z \<in> normal)"
  apply (induct w)
    apply simp
   apply simp
  apply (rule impI)
  apply (rule allI)
  apply (induct_tac z)
    apply (simp_all add: bin_add_BIT)
  apply (safe dest!: normal_BIT_D)
    apply simp_all
  done

lemma normal_Pls_eq_0: "w \<in> normal ==> (w = Pls) = (number_of w = (Numeral0::int))"
  apply (erule normal.induct)
     apply auto
  done

lemma bin_minus_normal: "w \<in> normal ==> bin_minus w \<in> normal"
  apply (erule normal.induct)
     apply (simp_all add: bin_minus_BIT)
  apply (rule normal.intros)
  apply assumption
  apply (simp add: normal_Pls_eq_0)
  apply (simp only: number_of_minus iszero_def zminus_equation [of _ "int 0"])
  apply (rule not_sym)
  apply simp
  done

lemma bin_mult_normal [rule_format]:
    "w \<in> normal ==> z \<in> normal --> bin_mult w z \<in> normal"
  apply (erule normal.induct)
     apply (simp_all add: bin_minus_normal bin_mult_BIT)
  apply (safe dest!: normal_BIT_D)
  apply (simp add: bin_add_normal)
  done

end