doc-src/TutorialI/Inductive/document/Even.tex
author berghofe
Sat, 10 May 2003 20:52:18 +0200
changeset 13997 3d53dcd77877
parent 12328 7c4ec77a8715
child 14470 1ffe42cfaefe
permissions -rw-r--r--
- Added split_min and split_max to preprocessor - Moved eta_long to Pure/pattern.ML

%
\begin{isabellebody}%
\def\isabellecontext{Even}%
\isanewline
\isacommand{theory}\ Even\ {\isacharequal}\ Main{\isacharcolon}\isanewline
\isanewline
\isanewline
\isamarkupfalse%
\isacommand{consts}\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{inductive}\ even\isanewline
\isakeyword{intros}\isanewline
zero{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
step{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
An inductive definition consists of introduction rules. 

\begin{isabelle}%
\ \ \ \ \ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even%
\end{isabelle}
\rulename{even.step}

\begin{isabelle}%
\ \ \ \ \ {\isasymlbrakk}xa\ {\isasymin}\ even{\isacharsemicolon}\ P\ {\isadigit{0}}{\isacharsemicolon}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ P\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ xa%
\end{isabelle}
\rulename{even.induct}

Attributes can be given to the introduction rules.  Here both rules are
specified as \isa{intro!}

Our first lemma states that numbers of the form $2\times k$ are even.%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ two{\isacharunderscore}times{\isacharunderscore}even{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isadigit{2}}{\isacharasterisk}k\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}induct{\isacharunderscore}tac\ k{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
The first step is induction on the natural number \isa{k}, which leaves
two subgoals:
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ {\isadigit{0}}\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ {\isacharasterisk}\ Suc\ n\ {\isasymin}\ even%
\end{isabelle}
Here \isa{auto} simplifies both subgoals so that they match the introduction
rules, which then are applied automatically.%
\end{isamarkuptxt}%
\ \isamarkuptrue%
\isacommand{apply}\ auto\isanewline
\isamarkupfalse%
\isacommand{done}\isamarkupfalse%
%
\begin{isamarkuptext}%
Our goal is to prove the equivalence between the traditional definition
of even (using the divides relation) and our inductive definition.  Half of
this equivalence is trivial using the lemma just proved, whose \isa{intro!}
attribute ensures it will be applied automatically.%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ dvd{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}{\isadigit{2}}\ dvd\ n\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}auto\ simp\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptext}%
our first rule induction!%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ n{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isasymexists}k{\isachardot}\ n\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymexists}k{\isachardot}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ clarify\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ k{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ k\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isasymexists}ka{\isachardot}\ Suc\ {\isacharparenleft}Suc\ {\isacharparenleft}{\isadigit{2}}\ {\isacharasterisk}\ k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ ka%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ {\isacharparenleft}rule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequote}Suc\ k{\isachardoublequote}\ \isakeyword{in}\ exI{\isacharcomma}\ simp{\isacharparenright}\isanewline
\isamarkupfalse%
\isacommand{done}\isamarkupfalse%
%
\begin{isamarkuptext}%
no iff-attribute because we don't always want to use it%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{theorem}\ even{\isacharunderscore}iff{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isadigit{2}}\ dvd\ n{\isacharparenright}{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}blast\ intro{\isacharcolon}\ dvd{\isacharunderscore}imp{\isacharunderscore}even\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptext}%
this result ISN'T inductive...%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ n\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}na{\isachardot}\ {\isasymlbrakk}na\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{oops}\isamarkupfalse%
%
\begin{isamarkuptext}%
...so we need an inductive lemma...%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{apply}\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isamarkupfalse%
%
\begin{isamarkuptxt}%
\begin{isabelle}%
\ {\isadigit{1}}{\isachardot}\ {\isadigit{0}}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even%
\end{isabelle}%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\ auto\isanewline
\isamarkupfalse%
\isacommand{done}\isamarkupfalse%
%
\begin{isamarkuptext}%
...and prove it in a separate step%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequote}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}drule\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcomma}\ simp{\isacharparenright}\isanewline
\isanewline
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}{\isachardoublequote}\isanewline
\isamarkupfalse%
\isacommand{by}\ {\isacharparenleft}blast\ dest{\isacharcolon}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharparenright}\isanewline
\isanewline
\isamarkupfalse%
\isacommand{end}\isanewline
\isanewline
\isamarkupfalse%
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: