Abbreviations can now be specified simultaneously
with introduction rules.
(* Title: HOL/Tools/inductive_package.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Author: Stefan Berghofer and Markus Wenzel, TU Muenchen
(Co)Inductive Definition module for HOL.
Features:
* least or greatest fixedpoints
* mutually recursive definitions
* definitions involving arbitrary monotone operators
* automatically proves introduction and elimination rules
Introduction rules have the form
[| M Pj ti, ..., Q x, ... |] ==> Pk t
where M is some monotone operator (usually the identity)
Q x is any side condition on the free variables
ti, t are any terms
Pj, Pk are two of the predicates being defined in mutual recursion
*)
signature INDUCTIVE_PACKAGE =
sig
val quiet_mode: bool ref
type inductive_result
val morph_result: morphism -> inductive_result -> inductive_result
type inductive_info
val the_inductive: Proof.context -> string -> inductive_info
val print_inductives: Proof.context -> unit
val mono_add: attribute
val mono_del: attribute
val get_monos: Proof.context -> thm list
val mk_cases: Proof.context -> term -> thm
val inductive_forall_name: string
val inductive_forall_def: thm
val rulify: thm -> thm
val inductive_cases: ((bstring * Attrib.src list) * string list) list ->
Proof.context -> thm list list * local_theory
val inductive_cases_i: ((bstring * Attrib.src list) * term list) list ->
Proof.context -> thm list list * local_theory
val add_inductive_i: bool -> bstring -> bool -> bool -> bool ->
(string * typ option * mixfix) list ->
(string * typ option) list -> ((bstring * Attrib.src list) * term) list -> thm list ->
local_theory -> inductive_result * local_theory
val add_inductive: bool -> bool -> (string * string option * mixfix) list ->
(string * string option * mixfix) list ->
((bstring * Attrib.src list) * string) list -> (thmref * Attrib.src list) list ->
local_theory -> inductive_result * local_theory
val add_inductive_global: bool -> bstring -> bool -> bool -> bool ->
(string * typ option * mixfix) list -> (string * typ option) list ->
((bstring * Attrib.src list) * term) list -> thm list -> theory -> inductive_result * theory
val setup: theory -> theory
end;
structure InductivePackage: INDUCTIVE_PACKAGE =
struct
(** theory context references **)
val mono_name = "Orderings.mono";
val gfp_name = "FixedPoint.gfp";
val lfp_name = "FixedPoint.lfp";
val inductive_forall_name = "HOL.induct_forall";
val inductive_forall_def = thm "induct_forall_def";
val inductive_conj_name = "HOL.induct_conj";
val inductive_conj_def = thm "induct_conj_def";
val inductive_conj = thms "induct_conj";
val inductive_atomize = thms "induct_atomize";
val inductive_rulify = thms "induct_rulify";
val inductive_rulify_fallback = thms "induct_rulify_fallback";
val notTrueE = TrueI RSN (2, notE);
val notFalseI = Seq.hd (atac 1 notI);
val simp_thms' = map (fn s => mk_meta_eq (the (find_first
(equal (term_of (read_cterm HOL.thy (s, propT))) o prop_of) simp_thms)))
["(~True) = False", "(~False) = True",
"(True --> ?P) = ?P", "(False --> ?P) = True",
"(?P & True) = ?P", "(True & ?P) = ?P"];
(** theory data **)
type inductive_result =
{preds: term list, defs: thm list, elims: thm list, raw_induct: thm,
induct: thm, intrs: thm list, mono: thm, unfold: thm};
fun morph_result phi {preds, defs, elims, raw_induct: thm, induct, intrs, mono, unfold} =
let
val term = Morphism.term phi;
val thm = Morphism.thm phi;
val fact = Morphism.fact phi;
in
{preds = map term preds, defs = fact defs, elims = fact elims, raw_induct = thm raw_induct,
induct = thm induct, intrs = fact intrs, mono = thm mono, unfold = thm unfold}
end;
type inductive_info =
{names: string list, coind: bool} * inductive_result;
structure InductiveData = GenericDataFun
(struct
val name = "HOL/inductive";
type T = inductive_info Symtab.table * thm list;
val empty = (Symtab.empty, []);
val extend = I;
fun merge _ ((tab1, monos1), (tab2, monos2)) =
(Symtab.merge (K true) (tab1, tab2), Drule.merge_rules (monos1, monos2));
fun print context (tab, monos) =
let
val ctxt = Context.proof_of context;
val space = Consts.space_of (ProofContext.consts_of ctxt);
in
[Pretty.strs ("(co)inductives:" :: map #1 (NameSpace.extern_table (space, tab))),
Pretty.big_list "monotonicity rules:" (map (ProofContext.pretty_thm ctxt) monos)]
|> Pretty.chunks |> Pretty.writeln
end;
end);
val get_inductives = InductiveData.get o Context.Proof;
val print_inductives = InductiveData.print o Context.Proof;
(* get and put data *)
fun the_inductive ctxt name =
(case Symtab.lookup (#1 (get_inductives ctxt)) name of
NONE => error ("Unknown (co)inductive predicate " ^ quote name)
| SOME info => info);
fun put_inductives names info = InductiveData.map (apfst (fn tab =>
fold (fn name => Symtab.update_new (name, info)) names tab
handle Symtab.DUP d => error ("Duplicate definition of (co)inductive predicate " ^ quote d)));
(** monotonicity rules **)
val get_monos = #2 o get_inductives;
val map_monos = InductiveData.map o apsnd;
fun mk_mono thm =
let
fun eq2mono thm' = [(*standard*) (thm' RS (thm' RS eq_to_mono))] @
(case concl_of thm of
(_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
| _ => [(*standard*) (thm' RS (thm' RS eq_to_mono2))]);
val concl = concl_of thm
in
if can Logic.dest_equals concl then
eq2mono (thm RS meta_eq_to_obj_eq)
else if can (HOLogic.dest_eq o HOLogic.dest_Trueprop) concl then
eq2mono thm
else [thm]
end;
val mono_add = Thm.declaration_attribute (map_monos o fold Drule.add_rule o mk_mono);
val mono_del = Thm.declaration_attribute (map_monos o fold Drule.del_rule o mk_mono);
(** misc utilities **)
val quiet_mode = ref false;
fun message s = if ! quiet_mode then () else writeln s;
fun clean_message s = if ! quick_and_dirty then () else message s;
val note_theorems = LocalTheory.notes Thm.theoremK;
val note_theorem = LocalTheory.note Thm.theoremK;
fun coind_prefix true = "co"
| coind_prefix false = "";
fun log b m n = if m >= n then 0 else 1 + log b (b * m) n;
fun make_bool_args f g [] i = []
| make_bool_args f g (x :: xs) i =
(if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
fun make_bool_args' xs =
make_bool_args (K HOLogic.false_const) (K HOLogic.true_const) xs;
fun find_arg T x [] = sys_error "find_arg"
| find_arg T x ((p as (_, (SOME _, _))) :: ps) =
apsnd (cons p) (find_arg T x ps)
| find_arg T x ((p as (U, (NONE, y))) :: ps) =
if T = U then (y, (U, (SOME x, y)) :: ps)
else apsnd (cons p) (find_arg T x ps);
fun make_args Ts xs =
map (fn (T, (NONE, ())) => Const ("arbitrary", T) | (_, (SOME t, ())) => t)
(fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
fun make_args' Ts xs Us =
fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
fun dest_predicate cs params t =
let
val k = length params;
val (c, ts) = strip_comb t;
val (xs, ys) = chop k ts;
val i = find_index_eq c cs;
in
if xs = params andalso i >= 0 then
SOME (c, i, ys, chop (length ys)
(List.drop (binder_types (fastype_of c), k)))
else NONE
end;
fun mk_names a 0 = []
| mk_names a 1 = [a]
| mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
(** process rules **)
local
fun err_in_rule thy name t msg =
error (cat_lines ["Ill-formed introduction rule " ^ quote name,
Sign.string_of_term thy t, msg]);
fun err_in_prem thy name t p msg =
error (cat_lines ["Ill-formed premise", Sign.string_of_term thy p,
"in introduction rule " ^ quote name, Sign.string_of_term thy t, msg]);
val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
val bad_app = "Inductive predicate must be applied to parameter(s) ";
fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
in
fun check_rule thy cs params ((name, att), rule) =
let
val params' = Term.variant_frees rule (Logic.strip_params rule);
val frees = rev (map Free params');
val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
val aprems = map (atomize_term thy) prems;
val arule = list_all_free (params', Logic.list_implies (aprems, concl));
fun check_ind err t = case dest_predicate cs params t of
NONE => err (bad_app ^
commas (map (Sign.string_of_term thy) params))
| SOME (_, _, ys, _) =>
if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
then err bad_ind_occ else ();
fun check_prem' prem t =
if head_of t mem cs then
check_ind (err_in_prem thy name rule prem) t
else (case t of
Abs (_, _, t) => check_prem' prem t
| t $ u => (check_prem' prem t; check_prem' prem u)
| _ => ());
fun check_prem (prem, aprem) =
if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
else err_in_prem thy name rule prem "Non-atomic premise";
in
(case concl of
Const ("Trueprop", _) $ t =>
if head_of t mem cs then
(check_ind (err_in_rule thy name rule) t;
List.app check_prem (prems ~~ aprems))
else err_in_rule thy name rule bad_concl
| _ => err_in_rule thy name rule bad_concl);
((name, att), arule)
end;
val rulify = (* FIXME norm_hhf *)
hol_simplify inductive_conj
#> hol_simplify inductive_rulify
#> hol_simplify inductive_rulify_fallback
(*#> standard*);
end;
(** proofs for (co)inductive predicates **)
(* prove monotonicity -- NOT subject to quick_and_dirty! *)
fun prove_mono predT fp_fun monos ctxt =
(message " Proving monotonicity ...";
Goal.prove ctxt [] [] (*NO quick_and_dirty here!*)
(HOLogic.mk_Trueprop
(Const (mono_name, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
(fn _ => EVERY [rtac monoI 1,
REPEAT (resolve_tac [le_funI, le_boolI'] 1),
REPEAT (FIRST
[atac 1,
resolve_tac (List.concat (map mk_mono monos) @ get_monos ctxt) 1,
etac le_funE 1, dtac le_boolD 1])]));
(* prove introduction rules *)
fun prove_intrs coind mono fp_def k intr_ts rec_preds_defs ctxt =
let
val _ = clean_message " Proving the introduction rules ...";
val unfold = funpow k (fn th => th RS fun_cong)
(mono RS (fp_def RS
(if coind then def_gfp_unfold else def_lfp_unfold)));
fun select_disj 1 1 = []
| select_disj _ 1 = [rtac disjI1]
| select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
val rules = [refl, TrueI, notFalseI, exI, conjI];
val intrs = map_index (fn (i, intr) =>
rulify (SkipProof.prove ctxt [] [] intr (fn _ => EVERY
[rewrite_goals_tac rec_preds_defs,
rtac (unfold RS iffD2) 1,
EVERY1 (select_disj (length intr_ts) (i + 1)),
(*Not ares_tac, since refl must be tried before any equality assumptions;
backtracking may occur if the premises have extra variables!*)
DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]))) intr_ts
in (intrs, unfold) end;
(* prove elimination rules *)
fun prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt =
let
val _ = clean_message " Proving the elimination rules ...";
val ([pname], ctxt') = Variable.variant_fixes ["P"] ctxt;
val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
fun dest_intr r =
(the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
Logic.strip_assums_hyp r, Logic.strip_params r);
val intrs = map dest_intr intr_ts ~~ intr_names;
val rules1 = [disjE, exE, FalseE];
val rules2 = [conjE, FalseE, notTrueE];
fun prove_elim c =
let
val Ts = List.drop (binder_types (fastype_of c), length params);
val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
val frees = map Free (anames ~~ Ts);
fun mk_elim_prem ((_, _, us, _), ts, params') =
list_all (params',
Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
(frees ~~ us) @ ts, P));
val c_intrs = (List.filter (equal c o #1 o #1 o #1) intrs);
val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
map mk_elim_prem (map #1 c_intrs)
in
(SkipProof.prove ctxt'' [] prems P
(fn {prems, ...} => EVERY
[cut_facts_tac [hd prems] 1,
rewrite_goals_tac rec_preds_defs,
dtac (unfold RS iffD1) 1,
REPEAT (FIRSTGOAL (eresolve_tac rules1)),
REPEAT (FIRSTGOAL (eresolve_tac rules2)),
EVERY (map (fn prem =>
DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
|> rulify
|> singleton (ProofContext.export ctxt'' ctxt),
map #2 c_intrs)
end
in map prove_elim cs end;
(* derivation of simplified elimination rules *)
local
(*delete needless equality assumptions*)
val refl_thin = prove_goal HOL.thy "!!P. a = a ==> P ==> P" (fn _ => [assume_tac 1]);
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
fun simp_case_tac solved ss i =
EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i
THEN_MAYBE (if solved then no_tac else all_tac); (* FIXME !? *)
in
fun mk_cases ctxt prop =
let
val thy = ProofContext.theory_of ctxt;
val ss = Simplifier.local_simpset_of ctxt;
fun err msg =
error (Pretty.string_of (Pretty.block
[Pretty.str msg, Pretty.fbrk, ProofContext.pretty_term ctxt prop]));
val P = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop) handle TERM _ =>
err "Object-logic proposition expected";
val c = Term.head_name_of P;
val (_, {elims, ...}) = the_inductive ctxt c;
val cprop = Thm.cterm_of thy prop;
val tac = ALLGOALS (simp_case_tac false ss) THEN prune_params_tac;
fun mk_elim rl =
Thm.implies_intr cprop (Tactic.rule_by_tactic tac (Thm.assume cprop RS rl))
|> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
in
(case get_first (try mk_elim) elims of
SOME r => r
| NONE => err "Proposition not an inductive predicate:")
end;
end;
(* inductive_cases *)
fun gen_inductive_cases prep_att prep_prop args lthy =
let
val thy = ProofContext.theory_of lthy;
val facts = args |> map (fn ((a, atts), props) =>
((a, map (prep_att thy) atts),
map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
in lthy |> note_theorems facts |>> map snd end;
val inductive_cases = gen_inductive_cases Attrib.intern_src ProofContext.read_prop;
val inductive_cases_i = gen_inductive_cases (K I) ProofContext.cert_prop;
fun ind_cases src =
Method.syntax (Scan.repeat1 Args.prop) src
#> (fn (ctxt, props) => Method.erule 0 (map (mk_cases ctxt) props));
(* prove induction rule *)
fun prove_indrule cs argTs bs xs rec_const params intr_ts mono
fp_def rec_preds_defs ctxt =
let
val _ = clean_message " Proving the induction rule ...";
val thy = ProofContext.theory_of ctxt;
(* predicates for induction rule *)
val (pnames, ctxt') = Variable.variant_fixes (mk_names "P" (length cs)) ctxt;
val preds = map Free (pnames ~~
map (fn c => List.drop (binder_types (fastype_of c), length params) --->
HOLogic.boolT) cs);
(* transform an introduction rule into a premise for induction rule *)
fun mk_ind_prem r =
let
fun subst s = (case dest_predicate cs params s of
SOME (_, i, ys, (_, Ts)) =>
let
val k = length Ts;
val bs = map Bound (k - 1 downto 0);
val P = list_comb (List.nth (preds, i), ys @ bs);
val Q = list_abs (mk_names "x" k ~~ Ts,
HOLogic.mk_binop inductive_conj_name (list_comb (s, bs), P))
in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
| NONE => (case s of
(t $ u) => (fst (subst t) $ fst (subst u), NONE)
| (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
| _ => (s, NONE)));
fun mk_prem (s, prems) = (case subst s of
(_, SOME (t, u)) => t :: u :: prems
| (t, _) => t :: prems);
val SOME (_, i, ys, _) = dest_predicate cs params
(HOLogic.dest_Trueprop (Logic.strip_assums_concl r))
in list_all_free (Logic.strip_params r,
Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
[] (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r))),
HOLogic.mk_Trueprop (list_comb (List.nth (preds, i), ys))))
end;
val ind_prems = map mk_ind_prem intr_ts;
(* make conclusions for induction rules *)
val Tss = map (binder_types o fastype_of) preds;
val (xnames, ctxt'') =
Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map (fn (((xnames, Ts), c), P) =>
let val frees = map Free (xnames ~~ Ts)
in HOLogic.mk_imp
(list_comb (c, params @ frees), list_comb (P, frees))
end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
(* make predicate for instantiation of abstract induction rule *)
val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
(map_index (fn (i, P) => foldr HOLogic.mk_imp
(list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))
(make_bool_args HOLogic.mk_not I bs i)) preds));
val ind_concl = HOLogic.mk_Trueprop
(HOLogic.mk_binrel "Orderings.less_eq" (rec_const, ind_pred));
val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct));
val induct = SkipProof.prove ctxt'' [] ind_prems ind_concl
(fn {prems, ...} => EVERY
[rewrite_goals_tac [inductive_conj_def],
DETERM (rtac raw_fp_induct 1),
REPEAT (resolve_tac [le_funI, le_boolI] 1),
rewrite_goals_tac (map mk_meta_eq [meet_fun_eq, meet_bool_eq] @ simp_thms'),
(*This disjE separates out the introduction rules*)
REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
(*Now break down the individual cases. No disjE here in case
some premise involves disjunction.*)
REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
REPEAT (FIRSTGOAL
(resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
(inductive_conj_def :: rec_preds_defs) prem, conjI, refl] 1)) prems)]);
val lemma = SkipProof.prove ctxt'' [] []
(Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
[rewrite_goals_tac rec_preds_defs,
REPEAT (EVERY
[REPEAT (resolve_tac [conjI, impI] 1),
REPEAT (eresolve_tac [le_funE, le_boolE] 1),
atac 1,
rewrite_goals_tac simp_thms',
atac 1])])
in singleton (ProofContext.export ctxt'' ctxt) (induct RS lemma) end;
(** specification of (co)inductive predicates **)
fun mk_ind_def alt_name coind cs intr_ts monos
params cnames_syn ctxt =
let
val fp_name = if coind then gfp_name else lfp_name;
val argTs = fold (fn c => fn Ts => Ts @
(List.drop (binder_types (fastype_of c), length params) \\ Ts)) cs [];
val k = log 2 1 (length cs);
val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
val p :: xs = map Free (Variable.variant_frees ctxt intr_ts
(("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
val bs = map Free (Variable.variant_frees ctxt (p :: xs @ intr_ts)
(map (rpair HOLogic.boolT) (mk_names "b" k)));
fun subst t = (case dest_predicate cs params t of
SOME (_, i, ts, (Ts, Us)) =>
let val zs = map Bound (length Us - 1 downto 0)
in
list_abs (map (pair "z") Us, list_comb (p,
make_bool_args' bs i @ make_args argTs ((ts ~~ Ts) @ (zs ~~ Us))))
end
| NONE => (case t of
t1 $ t2 => subst t1 $ subst t2
| Abs (x, T, u) => Abs (x, T, subst u)
| _ => t));
(* transform an introduction rule into a conjunction *)
(* [| p_i t; ... |] ==> p_j u *)
(* is transformed into *)
(* b_j & x_j = u & p b_j t & ... *)
fun transform_rule r =
let
val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params
(HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
val ps = make_bool_args HOLogic.mk_not I bs i @
map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
map (subst o HOLogic.dest_Trueprop)
(Logic.strip_assums_hyp r)
in foldr (fn ((x, T), P) => HOLogic.exists_const T $ (Abs (x, T, P)))
(if null ps then HOLogic.true_const else foldr1 HOLogic.mk_conj ps)
(Logic.strip_params r)
end
(* make a disjunction of all introduction rules *)
val fp_fun = fold_rev lambda (p :: bs @ xs)
(if null intr_ts then HOLogic.false_const
else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
(* add definiton of recursive predicates to theory *)
val rec_name = if alt_name = "" then
space_implode "_" (map fst cnames_syn) else alt_name;
val ((rec_const, (_, fp_def)), ctxt') = ctxt |>
Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
fold Variable.declare_term intr_ts |>
LocalTheory.def Thm.internalK
((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
(("", []), fold_rev lambda params
(Const (fp_name, (predT --> predT) --> predT) $ fp_fun)));
val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
(cterm_of (ProofContext.theory_of ctxt') (list_comb (rec_const, params)));
val specs = if length cs < 2 then [] else
map_index (fn (i, (name_mx, c)) =>
let
val Ts = List.drop (binder_types (fastype_of c), length params);
val xs = map Free (Variable.variant_frees ctxt intr_ts
(mk_names "x" (length Ts) ~~ Ts))
in
(name_mx, (("", []), fold_rev lambda (params @ xs)
(list_comb (rec_const, params @ make_bool_args' bs i @
make_args argTs (xs ~~ Ts)))))
end) (cnames_syn ~~ cs);
val (consts_defs, ctxt'') = fold_map (LocalTheory.def Thm.internalK) specs ctxt';
val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
val mono = prove_mono predT fp_fun monos ctxt''
in (ctxt'', rec_name, mono, fp_def', map (#2 o #2) consts_defs,
list_comb (rec_const, params), preds, argTs, bs, xs)
end;
fun add_ind_def verbose alt_name coind no_elim no_ind cs
intros monos params cnames_syn ctxt =
let
val _ =
if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^
commas_quote (map fst cnames_syn)) else ();
val cnames = map (Sign.full_name (ProofContext.theory_of ctxt) o #1) cnames_syn; (* FIXME *)
val ((intr_names, intr_atts), intr_ts) = apfst split_list (split_list intros);
val (ctxt1, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
argTs, bs, xs) = mk_ind_def alt_name coind cs intr_ts
monos params cnames_syn ctxt;
val (intrs, unfold) = prove_intrs coind mono fp_def (length bs + length xs)
intr_ts rec_preds_defs ctxt1;
val elims = if no_elim then [] else
cnames ~~ map (apfst (singleton (ProofContext.export ctxt1 ctxt)))
(prove_elims cs params intr_ts intr_names unfold rec_preds_defs ctxt1);
val raw_induct = zero_var_indexes (singleton (ProofContext.export ctxt1 ctxt)
(if no_ind then Drule.asm_rl else
if coind then ObjectLogic.rulify (rule_by_tactic
(rewrite_tac [le_fun_def, le_bool_def] THEN
fold_tac rec_preds_defs) (mono RS (fp_def RS def_coinduct)))
else
prove_indrule cs argTs bs xs rec_const params intr_ts mono fp_def
rec_preds_defs ctxt1));
val induct_cases = map (#1 o #1) intros;
val ind_case_names = RuleCases.case_names induct_cases;
val induct =
if coind then
(raw_induct, [RuleCases.case_names [rec_name],
RuleCases.case_conclusion (rec_name, induct_cases),
RuleCases.consumes 1])
else if no_ind orelse length cs > 1 then
(raw_induct, [ind_case_names, RuleCases.consumes 0])
else (raw_induct RSN (2, rev_mp), [ind_case_names, RuleCases.consumes 1]);
val (intrs', ctxt2) =
ctxt1 |>
note_theorems
(map (NameSpace.qualified rec_name) intr_names ~~
intr_atts ~~
map (fn th => [([th], [Attrib.internal (K (ContextRules.intro_query NONE))])])
(ProofContext.export ctxt1 ctxt intrs)) |>>
map (hd o snd); (* FIXME? *)
val (((_, elims'), (_, [induct'])), ctxt3) =
ctxt2 |>
note_theorem ((NameSpace.qualified rec_name "intros", []), intrs') ||>>
fold_map (fn (name, (elim, cases)) =>
note_theorem ((NameSpace.qualified (Sign.base_name name) "cases",
[Attrib.internal (K (RuleCases.case_names cases)),
Attrib.internal (K (RuleCases.consumes 1)),
Attrib.internal (K (InductAttrib.cases_set name)),
Attrib.internal (K (ContextRules.elim_query NONE))]), [elim]) #>
apfst (hd o snd)) elims ||>>
note_theorem ((NameSpace.qualified rec_name (coind_prefix coind ^ "induct"),
map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
val induct_att = if coind then InductAttrib.coinduct_set else InductAttrib.induct_set;
val ctxt4 = if no_ind then ctxt3 else
let val inducts = cnames ~~ ProjectRule.projects ctxt (1 upto length cnames) induct'
in
ctxt3 |>
note_theorems [((NameSpace.qualified rec_name (coind_prefix coind ^ "inducts"), []),
inducts |> map (fn (name, th) => ([th],
[Attrib.internal (K ind_case_names),
Attrib.internal (K (RuleCases.consumes 1)),
Attrib.internal (K (induct_att name))])))] |> snd
end;
val names = map #1 cnames_syn;
val result =
{preds = preds,
defs = fp_def :: rec_preds_defs,
mono = singleton (ProofContext.export ctxt1 ctxt) mono,
unfold = singleton (ProofContext.export ctxt1 ctxt) unfold,
intrs = intrs',
elims = elims',
raw_induct = rulify raw_induct,
induct = induct'};
val target_result = morph_result (LocalTheory.target_morphism ctxt4) result;
val ctxt5 = ctxt4
|> Context.proof_map (put_inductives names ({names = names, coind = coind}, result))
|> LocalTheory.declaration (fn phi =>
let
val names' = map (LocalTheory.target_name ctxt4 o Morphism.name phi) names;
val result' = morph_result phi target_result;
in put_inductives names' ({names = names', coind = coind}, result') end);
in (result, ctxt5) end;
(* external interfaces *)
fun add_inductive_i verbose alt_name coind no_elim no_ind cnames_syn pnames pre_intros monos ctxt =
let
val thy = ProofContext.theory_of ctxt;
val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
val frees = fold (Term.add_frees o snd) pre_intros [];
fun type_of s = (case AList.lookup op = frees s of
NONE => error ("No such variable: " ^ s) | SOME T => T);
fun is_abbrev ((name, atts), t) =
can (Logic.strip_assums_concl #> Logic.dest_equals) t andalso
(name = "" andalso null atts orelse
error "Abbreviations may not have names or attributes");
fun expand_atom tab (t as Free xT) =
the_default t (AList.lookup op = tab xT)
| expand_atom tab t = t;
fun expand [] r = r
| expand tab r = Envir.beta_norm (Term.map_aterms (expand_atom tab) r);
val (_, ctxt') = Variable.add_fixes (map #1 cnames_syn) ctxt;
fun prep_abbrevs [] abbrevs' abbrevs'' = (rev abbrevs', rev abbrevs'')
| prep_abbrevs ((_, abbrev) :: abbrevs) abbrevs' abbrevs'' =
let val ((s, T), t) =
LocalDefs.abs_def (snd (LocalDefs.cert_def ctxt' abbrev))
in case find_first (equal s o #1) cnames_syn of
NONE => error ("Head of abbreviation " ^ quote s ^ " undeclared")
| SOME (_, _, mx) => prep_abbrevs abbrevs
(((s, T), expand abbrevs' t) :: abbrevs')
(((s, mx), expand abbrevs' t) :: abbrevs'') (* FIXME: do not expand *)
end;
val (abbrevs, pre_intros') = List.partition is_abbrev pre_intros;
val (abbrevs', abbrevs'') = prep_abbrevs abbrevs [] [];
val _ = (case gen_inter (op = o apsnd fst)
(fold (Term.add_frees o snd) abbrevs' [], abbrevs') of
[] => ()
| xs => error ("Bad abbreviation(s): " ^ commas (map fst xs)));
val params = map
(fn (s, SOME T) => Free (s, T) | (s, NONE) => Free (s, type_of s)) pnames;
val cnames_syn' = filter_out (fn (s, _, _) =>
exists (equal s o fst o fst) abbrevs') cnames_syn;
val cs = map
(fn (s, SOME T, _) => Free (s, T) | (s, NONE, _) => Free (s, type_of s)) cnames_syn';
val cnames_syn'' = map (fn (s, _, mx) => (s, mx)) cnames_syn';
fun close_rule (x, r) = (x, list_all_free (rev (fold_aterms
(fn t as Free (v as (s, _)) =>
if Variable.is_fixed ctxt s orelse member op = cs t orelse
member op = params t then I else insert op = v
| _ => I) r []), r));
val intros = map (apsnd (expand abbrevs') #>
check_rule thy cs params #> close_rule) pre_intros';
in
ctxt |>
add_ind_def verbose alt_name coind no_elim no_ind cs intros monos
params cnames_syn'' ||>
fold (LocalTheory.abbrev Syntax.default_mode) abbrevs''
end;
fun add_inductive verbose coind cnames_syn pnames_syn intro_srcs raw_monos ctxt =
let
val (_, ctxt') = Specification.read_specification (cnames_syn @ pnames_syn) [] ctxt;
val intrs = map (fn ((name, att), s) => apsnd hd (hd (snd (fst
(Specification.read_specification [] [((name, att), [s])] ctxt'))))
handle ERROR msg =>
cat_error msg ("The error(s) above occurred for\n" ^
(if name = "" then "" else name ^ ": ") ^ s)) intro_srcs;
val pnames = map (fn (s, _, _) =>
(s, SOME (ProofContext.infer_type ctxt' s))) pnames_syn;
val cnames_syn' = map (fn (s, _, mx) =>
(s, SOME (ProofContext.infer_type ctxt' s), mx)) cnames_syn;
val (monos, ctxt'') = LocalTheory.theory_result (IsarCmd.apply_theorems raw_monos) ctxt;
in
add_inductive_i verbose "" coind false false cnames_syn' pnames intrs monos ctxt''
end;
fun add_inductive_global verbose alt_name coind no_elim no_ind cnames_syn pnames pre_intros monos =
TheoryTarget.init NONE #>
add_inductive_i verbose alt_name coind no_elim no_ind cnames_syn pnames pre_intros monos #>
(fn (_, lthy) =>
(#2 (the_inductive (LocalTheory.target_of lthy)
(LocalTheory.target_name lthy (#1 (hd cnames_syn)))),
ProofContext.theory_of (LocalTheory.exit lthy)));
(** package setup **)
(* setup theory *)
val setup =
InductiveData.init #>
Method.add_methods [("ind_cases2", ind_cases, (* FIXME "ind_cases" (?) *)
"dynamic case analysis on predicates")] #>
Attrib.add_attributes [("mono2", Attrib.add_del_args mono_add mono_del, (* FIXME "mono" *)
"declaration of monotonicity rule")];
(* outer syntax *)
local structure P = OuterParse and K = OuterKeyword in
(* FIXME tmp *)
fun flatten_specification specs = specs |> maps
(fn (a, (concl, [])) => concl |> map
(fn ((b, atts), [B]) =>
if a = "" then ((b, atts), B)
else if b = "" then ((a, atts), B)
else error ("Illegal nested case names " ^ quote (NameSpace.append a b))
| ((b, _), _) => error ("Illegal simultaneous specification " ^ quote b))
| (a, _) => error ("Illegal local specification parameters for " ^ quote a));
fun ind_decl coind =
P.opt_locale_target --
P.fixes -- P.for_fixes --
Scan.optional (P.$$$ "where" |-- P.!!! P.specification) [] --
Scan.optional (P.$$$ "monos" |-- P.!!! P.xthms1) []
>> (fn ((((loc, preds), params), specs), monos) =>
Toplevel.local_theory loc
(fn lthy => lthy
|> add_inductive true coind preds params (flatten_specification specs) monos |> snd));
val inductiveP =
OuterSyntax.command "inductive2" "define inductive predicates" K.thy_decl (ind_decl false);
val coinductiveP =
OuterSyntax.command "coinductive2" "define coinductive predicates" K.thy_decl (ind_decl true);
val inductive_casesP =
OuterSyntax.command "inductive_cases2"
"create simplified instances of elimination rules (improper)" K.thy_script
(P.opt_locale_target -- P.and_list1 P.spec
>> (fn (loc, specs) => Toplevel.local_theory loc (snd o inductive_cases specs)));
val _ = OuterSyntax.add_keywords ["monos"];
val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP, inductive_casesP];
end;
end;