more standard session build process, including browser_info;
clarified final setup of global ML environment;
(* Title: Pure/Pure.thy
Author: Makarius
The Pure theory, with definitions of Isar commands and some lemmas.
*)
theory Pure
keywords
"!!" "!" "+" "--" ":" ";" "<" "<=" "=" "=>" "?" "[" "\<comment>" "\<equiv>"
"\<leftharpoondown>" "\<rightharpoonup>" "\<rightleftharpoons>"
"\<subseteq>" "]" "assumes" "attach" "binder" "constrains"
"defines" "rewrites" "fixes" "for" "if" "in" "includes" "infix"
"infixl" "infixr" "is" "notes" "obtains" "open" "output"
"overloaded" "pervasive" "premises" "private" "qualified" "rewrites"
"shows" "structure" "unchecked" "where" "when" "|"
and "text" "txt" :: document_body
and "text_raw" :: document_raw
and "default_sort" :: thy_decl == ""
and "typedecl" "type_synonym" "nonterminal" "judgment"
"consts" "syntax" "no_syntax" "translations" "no_translations"
"definition" "abbreviation" "type_notation" "no_type_notation" "notation"
"no_notation" "axiomatization" "lemmas" "declare"
"hide_class" "hide_type" "hide_const" "hide_fact" :: thy_decl
and "ML_file" "ML_file_debug" "ML_file_no_debug" :: thy_load % "ML"
and "SML_file" "SML_file_debug" "SML_file_no_debug" :: thy_load % "ML"
and "SML_import" "SML_export" :: thy_decl % "ML"
and "ML_prf" :: prf_decl % "proof" (* FIXME % "ML" ?? *)
and "ML_val" "ML_command" :: diag % "ML"
and "simproc_setup" :: thy_decl % "ML" == ""
and "setup" "local_setup" "attribute_setup" "method_setup"
"declaration" "syntax_declaration"
"parse_ast_translation" "parse_translation" "print_translation"
"typed_print_translation" "print_ast_translation" "oracle" :: thy_decl % "ML"
and "bundle" :: thy_decl
and "include" "including" :: prf_decl
and "print_bundles" :: diag
and "context" "locale" "experiment" :: thy_decl_block
and "interpret" :: prf_goal % "proof"
and "interpretation" "global_interpretation" "sublocale" :: thy_goal
and "class" :: thy_decl_block
and "subclass" :: thy_goal
and "instantiation" :: thy_decl_block
and "instance" :: thy_goal
and "overloading" :: thy_decl_block
and "code_datatype" :: thy_decl
and "theorem" "lemma" "corollary" "proposition" :: thy_goal
and "schematic_goal" :: thy_goal
and "notepad" :: thy_decl_block
and "have" :: prf_goal % "proof"
and "hence" :: prf_goal % "proof" == "then have"
and "show" :: prf_asm_goal % "proof"
and "thus" :: prf_asm_goal % "proof" == "then show"
and "then" "from" "with" :: prf_chain % "proof"
and "note" :: prf_decl % "proof"
and "supply" :: prf_script % "proof"
and "using" "unfolding" :: prf_decl % "proof"
and "fix" "assume" "presume" "def" :: prf_asm % "proof"
and "consider" :: prf_goal % "proof"
and "obtain" :: prf_asm_goal % "proof"
and "guess" :: prf_script_asm_goal % "proof"
and "let" "write" :: prf_decl % "proof"
and "case" :: prf_asm % "proof"
and "{" :: prf_open % "proof"
and "}" :: prf_close % "proof"
and "next" :: next_block % "proof"
and "qed" :: qed_block % "proof"
and "by" ".." "." "sorry" "\<proof>" :: "qed" % "proof"
and "done" :: "qed_script" % "proof"
and "oops" :: qed_global % "proof"
and "defer" "prefer" "apply" :: prf_script % "proof"
and "apply_end" :: prf_script % "proof" == ""
and "subgoal" :: prf_script_goal % "proof"
and "proof" :: prf_block % "proof"
and "also" "moreover" :: prf_decl % "proof"
and "finally" "ultimately" :: prf_chain % "proof"
and "back" :: prf_script % "proof"
and "help" "print_commands" "print_options" "print_context" "print_theory"
"print_definitions" "print_syntax" "print_abbrevs" "print_defn_rules"
"print_theorems" "print_locales" "print_classes" "print_locale"
"print_interps" "print_dependencies" "print_attributes"
"print_simpset" "print_rules" "print_trans_rules" "print_methods"
"print_antiquotations" "print_ML_antiquotations" "thy_deps"
"locale_deps" "class_deps" "thm_deps" "print_term_bindings"
"print_facts" "print_cases" "print_statement" "thm" "prf" "full_prf"
"prop" "term" "typ" "print_codesetup" "unused_thms" :: diag
and "display_drafts" "print_state" :: diag
and "welcome" :: diag
and "end" :: thy_end % "theory"
and "realizers" :: thy_decl == ""
and "realizability" :: thy_decl == ""
and "extract_type" "extract" :: thy_decl
and "find_theorems" "find_consts" :: diag
and "named_theorems" :: thy_decl
begin
section \<open>Isar commands\<close>
subsection \<open>Embedded ML text\<close>
ML \<open>
local
val semi = Scan.option @{keyword ";"};
val _ =
Outer_Syntax.command @{command_keyword ML_file} "read and evaluate Isabelle/ML file"
(Resources.parse_files "ML_file" --| semi >> ML_File.ML NONE);
val _ =
Outer_Syntax.command @{command_keyword ML_file_debug}
"read and evaluate Isabelle/ML file (with debugger information)"
(Resources.parse_files "ML_file_debug" --| semi >> ML_File.ML (SOME true));
val _ =
Outer_Syntax.command @{command_keyword ML_file_no_debug}
"read and evaluate Isabelle/ML file (no debugger information)"
(Resources.parse_files "ML_file_no_debug" --| semi >> ML_File.ML (SOME false));
val _ =
Outer_Syntax.command @{command_keyword SML_file} "read and evaluate Standard ML file"
(Resources.parse_files "SML_file" --| semi >> ML_File.SML NONE);
val _ =
Outer_Syntax.command @{command_keyword SML_file_debug}
"read and evaluate Standard ML file (with debugger information)"
(Resources.parse_files "SML_file_debug" --| semi >> ML_File.SML (SOME true));
val _ =
Outer_Syntax.command @{command_keyword SML_file_no_debug}
"read and evaluate Standard ML file (no debugger information)"
(Resources.parse_files "SML_file_no_debug" --| semi >> ML_File.SML (SOME false));
val _ =
Outer_Syntax.command @{command_keyword SML_export} "evaluate SML within Isabelle/ML environment"
(Parse.ML_source >> (fn source =>
let
val flags: ML_Compiler.flags =
{SML = true, exchange = true, redirect = false, verbose = true,
debug = NONE, writeln = writeln, warning = warning};
in
Toplevel.theory
(Context.theory_map (ML_Context.exec (fn () => ML_Context.eval_source flags source)))
end));
val _ =
Outer_Syntax.command @{command_keyword SML_import} "evaluate Isabelle/ML within SML environment"
(Parse.ML_source >> (fn source =>
let
val flags: ML_Compiler.flags =
{SML = false, exchange = true, redirect = false, verbose = true,
debug = NONE, writeln = writeln, warning = warning};
in
Toplevel.generic_theory
(ML_Context.exec (fn () => ML_Context.eval_source flags source) #>
Local_Theory.propagate_ml_env)
end));
val _ =
Outer_Syntax.command @{command_keyword ML_prf} "ML text within proof"
(Parse.ML_source >> (fn source =>
Toplevel.proof (Proof.map_context (Context.proof_map
(ML_Context.exec (fn () =>
ML_Context.eval_source (ML_Compiler.verbose true ML_Compiler.flags) source))) #>
Proof.propagate_ml_env)));
val _ =
Outer_Syntax.command @{command_keyword ML_val} "diagnostic ML text"
(Parse.ML_source >> Isar_Cmd.ml_diag true);
val _ =
Outer_Syntax.command @{command_keyword ML_command} "diagnostic ML text (silent)"
(Parse.ML_source >> Isar_Cmd.ml_diag false);
val _ =
Outer_Syntax.command @{command_keyword setup} "ML setup for global theory"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.setup));
val _ =
Outer_Syntax.local_theory @{command_keyword local_setup} "ML setup for local theory"
(Parse.ML_source >> Isar_Cmd.local_setup);
val _ =
Outer_Syntax.command @{command_keyword oracle} "declare oracle"
(Parse.range Parse.name -- (@{keyword "="} |-- Parse.ML_source) >>
(fn (x, y) => Toplevel.theory (Isar_Cmd.oracle x y)));
val _ =
Outer_Syntax.local_theory @{command_keyword attribute_setup} "define attribute in ML"
(Parse.position Parse.name --
Parse.!!! (@{keyword "="} |-- Parse.ML_source -- Scan.optional Parse.text "")
>> (fn (name, (txt, cmt)) => Attrib.attribute_setup name txt cmt));
val _ =
Outer_Syntax.local_theory @{command_keyword method_setup} "define proof method in ML"
(Parse.position Parse.name --
Parse.!!! (@{keyword "="} |-- Parse.ML_source -- Scan.optional Parse.text "")
>> (fn (name, (txt, cmt)) => Method.method_setup name txt cmt));
val _ =
Outer_Syntax.local_theory @{command_keyword declaration} "generic ML declaration"
(Parse.opt_keyword "pervasive" -- Parse.ML_source
>> (fn (pervasive, txt) => Isar_Cmd.declaration {syntax = false, pervasive = pervasive} txt));
val _ =
Outer_Syntax.local_theory @{command_keyword syntax_declaration} "generic ML syntax declaration"
(Parse.opt_keyword "pervasive" -- Parse.ML_source
>> (fn (pervasive, txt) => Isar_Cmd.declaration {syntax = true, pervasive = pervasive} txt));
val _ =
Outer_Syntax.local_theory @{command_keyword simproc_setup} "define simproc in ML"
(Parse.position Parse.name --
(@{keyword "("} |-- Parse.enum1 "|" Parse.term --| @{keyword ")"} --| @{keyword "="}) --
Parse.ML_source >> (fn ((a, b), c) => Isar_Cmd.simproc_setup a b c));
in end\<close>
subsection \<open>Theory commands\<close>
subsubsection \<open>Sorts and types\<close>
ML \<open>
local
val _ =
Outer_Syntax.local_theory @{command_keyword default_sort}
"declare default sort for explicit type variables"
(Parse.sort >> (fn s => fn lthy => Local_Theory.set_defsort (Syntax.read_sort lthy s) lthy));
val _ =
Outer_Syntax.local_theory @{command_keyword typedecl} "type declaration"
(Parse.type_args -- Parse.binding -- Parse.opt_mixfix
>> (fn ((args, a), mx) =>
Typedecl.typedecl {final = true} (a, map (rpair dummyS) args, mx) #> snd));
val _ =
Outer_Syntax.local_theory @{command_keyword type_synonym} "declare type abbreviation"
(Parse.type_args -- Parse.binding --
(@{keyword "="} |-- Parse.!!! (Parse.typ -- Parse.opt_mixfix'))
>> (fn ((args, a), (rhs, mx)) => snd o Typedecl.abbrev_cmd (a, args, mx) rhs));
in end\<close>
subsubsection \<open>Consts\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword judgment} "declare object-logic judgment"
(Parse.const_binding >> (Toplevel.theory o Object_Logic.add_judgment_cmd));
val _ =
Outer_Syntax.command @{command_keyword consts} "declare constants"
(Scan.repeat1 Parse.const_binding >> (Toplevel.theory o Sign.add_consts_cmd));
in end\<close>
subsubsection \<open>Syntax and translations\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword nonterminal}
"declare syntactic type constructors (grammar nonterminal symbols)"
(Parse.and_list1 Parse.binding >> (Toplevel.theory o Sign.add_nonterminals_global));
val _ =
Outer_Syntax.command @{command_keyword syntax} "add raw syntax clauses"
(Parse.syntax_mode -- Scan.repeat1 Parse.const_decl
>> (Toplevel.theory o uncurry Sign.add_syntax_cmd));
val _ =
Outer_Syntax.command @{command_keyword no_syntax} "delete raw syntax clauses"
(Parse.syntax_mode -- Scan.repeat1 Parse.const_decl
>> (Toplevel.theory o uncurry Sign.del_syntax_cmd));
val trans_pat =
Scan.optional
(@{keyword "("} |-- Parse.!!! (Parse.inner_syntax Parse.xname --| @{keyword ")"})) "logic"
-- Parse.inner_syntax Parse.string;
fun trans_arrow toks =
((@{keyword "\<rightharpoonup>"} || @{keyword "=>"}) >> K Syntax.Parse_Rule ||
(@{keyword "\<leftharpoondown>"} || @{keyword "<="}) >> K Syntax.Print_Rule ||
(@{keyword "\<rightleftharpoons>"} || @{keyword "=="}) >> K Syntax.Parse_Print_Rule) toks;
val trans_line =
trans_pat -- Parse.!!! (trans_arrow -- trans_pat)
>> (fn (left, (arr, right)) => arr (left, right));
val _ =
Outer_Syntax.command @{command_keyword translations} "add syntax translation rules"
(Scan.repeat1 trans_line >> (Toplevel.theory o Isar_Cmd.translations));
val _ =
Outer_Syntax.command @{command_keyword no_translations} "delete syntax translation rules"
(Scan.repeat1 trans_line >> (Toplevel.theory o Isar_Cmd.no_translations));
in end\<close>
subsubsection \<open>Translation functions\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword parse_ast_translation}
"install parse ast translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.parse_ast_translation));
val _ =
Outer_Syntax.command @{command_keyword parse_translation}
"install parse translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.parse_translation));
val _ =
Outer_Syntax.command @{command_keyword print_translation}
"install print translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.print_translation));
val _ =
Outer_Syntax.command @{command_keyword typed_print_translation}
"install typed print translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.typed_print_translation));
val _ =
Outer_Syntax.command @{command_keyword print_ast_translation}
"install print ast translation functions"
(Parse.ML_source >> (Toplevel.theory o Isar_Cmd.print_ast_translation));
in end\<close>
subsubsection \<open>Specifications\<close>
ML \<open>
local
val _ =
Outer_Syntax.local_theory' @{command_keyword definition} "constant definition"
(Parse_Spec.constdef >> (fn args => #2 oo Specification.definition_cmd args));
val _ =
Outer_Syntax.local_theory' @{command_keyword abbreviation} "constant abbreviation"
(Parse.syntax_mode -- (Scan.option Parse_Spec.constdecl -- Parse.prop)
>> (fn (mode, args) => Specification.abbreviation_cmd mode args));
val _ =
Outer_Syntax.command @{command_keyword axiomatization} "axiomatic constant specification"
(Scan.optional Parse.fixes [] --
Scan.optional (Parse.where_ |-- Parse.!!! (Parse.and_list1 Parse_Spec.specs)) []
>> (fn (x, y) => Toplevel.theory (#2 o Specification.axiomatization_cmd x y)));
in end\<close>
subsubsection \<open>Notation\<close>
ML \<open>
local
val _ =
Outer_Syntax.local_theory @{command_keyword type_notation}
"add concrete syntax for type constructors"
(Parse.syntax_mode -- Parse.and_list1 (Parse.type_const -- Parse.mixfix)
>> (fn (mode, args) => Specification.type_notation_cmd true mode args));
val _ =
Outer_Syntax.local_theory @{command_keyword no_type_notation}
"delete concrete syntax for type constructors"
(Parse.syntax_mode -- Parse.and_list1 (Parse.type_const -- Parse.mixfix)
>> (fn (mode, args) => Specification.type_notation_cmd false mode args));
val _ =
Outer_Syntax.local_theory @{command_keyword notation}
"add concrete syntax for constants / fixed variables"
(Parse.syntax_mode -- Parse.and_list1 (Parse.const -- Parse.mixfix)
>> (fn (mode, args) => Specification.notation_cmd true mode args));
val _ =
Outer_Syntax.local_theory @{command_keyword no_notation}
"delete concrete syntax for constants / fixed variables"
(Parse.syntax_mode -- Parse.and_list1 (Parse.const -- Parse.mixfix)
>> (fn (mode, args) => Specification.notation_cmd false mode args));
in end\<close>
subsubsection \<open>Theorems\<close>
ML \<open>
local
val _ =
Outer_Syntax.local_theory' @{command_keyword lemmas} "define theorems"
(Parse_Spec.name_facts -- Parse.for_fixes >>
(fn (facts, fixes) => #2 oo Specification.theorems_cmd Thm.theoremK facts fixes));
val _ =
Outer_Syntax.local_theory' @{command_keyword declare} "declare theorems"
(Parse.and_list1 Parse.xthms1 -- Parse.for_fixes
>> (fn (facts, fixes) =>
#2 oo Specification.theorems_cmd "" [(Attrib.empty_binding, flat facts)] fixes));
val _ =
Outer_Syntax.local_theory @{command_keyword named_theorems}
"declare named collection of theorems"
(Parse.and_list1 (Parse.binding -- Scan.optional Parse.text "") >>
fold (fn (b, descr) => snd o Named_Theorems.declare b descr));
in end\<close>
subsubsection \<open>Hide names\<close>
ML \<open>
local
fun hide_names command_keyword what hide parse prep =
Outer_Syntax.command command_keyword ("hide " ^ what ^ " from name space")
((Parse.opt_keyword "open" >> not) -- Scan.repeat1 parse >> (fn (fully, args) =>
(Toplevel.theory (fn thy =>
let val ctxt = Proof_Context.init_global thy
in fold (hide fully o prep ctxt) args thy end))));
val _ =
hide_names @{command_keyword hide_class} "classes" Sign.hide_class Parse.class
Proof_Context.read_class;
val _ =
hide_names @{command_keyword hide_type} "types" Sign.hide_type Parse.type_const
((#1 o dest_Type) oo Proof_Context.read_type_name {proper = true, strict = false});
val _ =
hide_names @{command_keyword hide_const} "consts" Sign.hide_const Parse.const
((#1 o dest_Const) oo Proof_Context.read_const {proper = true, strict = false});
val _ =
hide_names @{command_keyword hide_fact} "facts" Global_Theory.hide_fact
(Parse.position Parse.xname) (Global_Theory.check_fact o Proof_Context.theory_of);
in end\<close>
subsection \<open>Bundled declarations\<close>
ML \<open>
local
val _ =
Outer_Syntax.local_theory @{command_keyword bundle} "define bundle of declarations"
((Parse.binding --| @{keyword "="}) -- Parse.xthms1 -- Parse.for_fixes
>> (uncurry Bundle.bundle_cmd));
val _ =
Outer_Syntax.command @{command_keyword include}
"include declarations from bundle in proof body"
(Scan.repeat1 (Parse.position Parse.xname) >> (Toplevel.proof o Bundle.include_cmd));
val _ =
Outer_Syntax.command @{command_keyword including}
"include declarations from bundle in goal refinement"
(Scan.repeat1 (Parse.position Parse.xname) >> (Toplevel.proof o Bundle.including_cmd));
val _ =
Outer_Syntax.command @{command_keyword print_bundles}
"print bundles of declarations"
(Parse.opt_bang >> (fn b => Toplevel.keep (Bundle.print_bundles b o Toplevel.context_of)));
in end\<close>
subsection \<open>Local theory specifications\<close>
subsubsection \<open>Specification context\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword context} "begin local theory context"
((Parse.position Parse.xname >> (fn name =>
Toplevel.begin_local_theory true (Named_Target.begin name)) ||
Scan.optional Parse_Spec.includes [] -- Scan.repeat Parse_Spec.context_element
>> (fn (incls, elems) => Toplevel.open_target (#2 o Bundle.context_cmd incls elems)))
--| Parse.begin);
val _ =
Outer_Syntax.command @{command_keyword end} "end context"
(Scan.succeed
(Toplevel.exit o Toplevel.end_local_theory o Toplevel.close_target o
Toplevel.end_proof (K Proof.end_notepad)));
in end\<close>
subsubsection \<open>Locales and interpretation\<close>
ML \<open>
local
val locale_val =
Parse_Spec.locale_expression --
Scan.optional (@{keyword "+"} |-- Parse.!!! (Scan.repeat1 Parse_Spec.context_element)) [] ||
Scan.repeat1 Parse_Spec.context_element >> pair ([], []);
val _ =
Outer_Syntax.command @{command_keyword locale} "define named specification context"
(Parse.binding --
Scan.optional (@{keyword "="} |-- Parse.!!! locale_val) (([], []), []) -- Parse.opt_begin
>> (fn ((name, (expr, elems)), begin) =>
Toplevel.begin_local_theory begin
(Expression.add_locale_cmd name Binding.empty expr elems #> snd)));
val _ =
Outer_Syntax.command @{command_keyword experiment} "open private specification context"
(Scan.repeat Parse_Spec.context_element --| Parse.begin
>> (fn elems =>
Toplevel.begin_local_theory true (Experiment.experiment_cmd elems #> snd)));
val interpretation_args =
Parse.!!! Parse_Spec.locale_expression --
Scan.optional
(@{keyword "rewrites"} |-- Parse.and_list1 (Parse_Spec.opt_thm_name ":" -- Parse.prop)) [];
val _ =
Outer_Syntax.command @{command_keyword interpret}
"prove interpretation of locale expression in proof context"
(interpretation_args >> (fn (expr, equations) =>
Toplevel.proof (Interpretation.interpret_cmd expr equations)));
val interpretation_args_with_defs =
Parse.!!! Parse_Spec.locale_expression --
(Scan.optional (@{keyword "defines"} |-- Parse.and_list1 (Parse_Spec.opt_thm_name ":"
-- ((Parse.binding -- Parse.opt_mixfix') --| @{keyword "="} -- Parse.term))) [] --
Scan.optional
(@{keyword "rewrites"} |-- Parse.and_list1 (Parse_Spec.opt_thm_name ":" -- Parse.prop)) []);
val _ =
Outer_Syntax.local_theory_to_proof @{command_keyword global_interpretation}
"prove interpretation of locale expression into global theory"
(interpretation_args_with_defs >> (fn (expr, (defs, equations)) =>
Interpretation.global_interpretation_cmd expr defs equations));
val _ =
Outer_Syntax.command @{command_keyword sublocale}
"prove sublocale relation between a locale and a locale expression"
((Parse.position Parse.xname --| (@{keyword "\<subseteq>"} || @{keyword "<"}) --
interpretation_args_with_defs >> (fn (loc, (expr, (defs, equations))) =>
Toplevel.theory_to_proof (Interpretation.global_sublocale_cmd loc expr defs equations)))
|| interpretation_args_with_defs >> (fn (expr, (defs, equations)) =>
Toplevel.local_theory_to_proof NONE NONE (Interpretation.sublocale_cmd expr defs equations)));
val _ =
Outer_Syntax.command @{command_keyword interpretation}
"prove interpretation of locale expression in local theory or into global theory"
(interpretation_args >> (fn (expr, equations) =>
Toplevel.local_theory_to_proof NONE NONE
(Interpretation.isar_interpretation_cmd expr equations)));
in end\<close>
subsubsection \<open>Type classes\<close>
ML \<open>
local
val class_val =
Parse_Spec.class_expression --
Scan.optional (@{keyword "+"} |-- Parse.!!! (Scan.repeat1 Parse_Spec.context_element)) [] ||
Scan.repeat1 Parse_Spec.context_element >> pair [];
val _ =
Outer_Syntax.command @{command_keyword class} "define type class"
(Parse.binding -- Scan.optional (@{keyword "="} |-- class_val) ([], []) -- Parse.opt_begin
>> (fn ((name, (supclasses, elems)), begin) =>
Toplevel.begin_local_theory begin
(Class_Declaration.class_cmd name supclasses elems #> snd)));
val _ =
Outer_Syntax.local_theory_to_proof @{command_keyword subclass} "prove a subclass relation"
(Parse.class >> Class_Declaration.subclass_cmd);
val _ =
Outer_Syntax.command @{command_keyword instantiation} "instantiate and prove type arity"
(Parse.multi_arity --| Parse.begin
>> (fn arities => Toplevel.begin_local_theory true (Class.instantiation_cmd arities)));
val _ =
Outer_Syntax.command @{command_keyword instance} "prove type arity or subclass relation"
((Parse.class --
((@{keyword "\<subseteq>"} || @{keyword "<"}) |-- Parse.!!! Parse.class) >> Class.classrel_cmd ||
Parse.multi_arity >> Class.instance_arity_cmd) >> Toplevel.theory_to_proof ||
Scan.succeed (Toplevel.local_theory_to_proof NONE NONE (Class.instantiation_instance I)));
in end\<close>
subsubsection \<open>Arbitrary overloading\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword overloading} "overloaded definitions"
(Scan.repeat1 (Parse.name --| (@{keyword "=="} || @{keyword "\<equiv>"}) -- Parse.term --
Scan.optional (@{keyword "("} |-- (@{keyword "unchecked"} >> K false) --| @{keyword ")"}) true
>> Scan.triple1) --| Parse.begin
>> (fn operations => Toplevel.begin_local_theory true (Overloading.overloading_cmd operations)));
in end\<close>
subsection \<open>Proof commands\<close>
ML \<open>
local
val _ =
Outer_Syntax.local_theory_to_proof @{command_keyword notepad} "begin proof context"
(Parse.begin >> K Proof.begin_notepad);
in end\<close>
subsubsection \<open>Statements\<close>
ML \<open>
local
val structured_statement =
Parse_Spec.statement -- Parse_Spec.cond_statement -- Parse.for_fixes
>> (fn ((shows, (strict, assumes)), fixes) => (strict, fixes, assumes, shows));
fun theorem spec schematic descr =
Outer_Syntax.local_theory_to_proof' spec
("state " ^ descr)
(Scan.optional (Parse_Spec.opt_thm_name ":" --|
Scan.ahead (Parse_Spec.includes >> K "" ||
Parse_Spec.locale_keyword || Parse_Spec.statement_keyword)) Attrib.empty_binding --
Scan.optional Parse_Spec.includes [] --
Parse_Spec.general_statement >> (fn ((a, includes), (elems, concl)) =>
((if schematic then Specification.schematic_theorem_cmd else Specification.theorem_cmd)
Thm.theoremK NONE (K I) a includes elems concl)));
val _ = theorem @{command_keyword theorem} false "theorem";
val _ = theorem @{command_keyword lemma} false "lemma";
val _ = theorem @{command_keyword corollary} false "corollary";
val _ = theorem @{command_keyword proposition} false "proposition";
val _ = theorem @{command_keyword schematic_goal} true "schematic goal";
val _ =
Outer_Syntax.command @{command_keyword have} "state local goal"
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.have_cmd a NONE (K I) b c d int #> #2)));
val _ =
Outer_Syntax.command @{command_keyword show} "state local goal, to refine pending subgoals"
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.show_cmd a NONE (K I) b c d int #> #2)));
val _ =
Outer_Syntax.command @{command_keyword hence} "old-style alias of \"then have\""
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.chain #> Proof.have_cmd a NONE (K I) b c d int #> #2)));
val _ =
Outer_Syntax.command @{command_keyword thus} "old-style alias of \"then show\""
(structured_statement >> (fn (a, b, c, d) =>
Toplevel.proof' (fn int => Proof.chain #> Proof.show_cmd a NONE (K I) b c d int #> #2)));
in end\<close>
subsubsection \<open>Local facts\<close>
ML \<open>
local
val facts = Parse.and_list1 Parse.xthms1;
val _ =
Outer_Syntax.command @{command_keyword then} "forward chaining"
(Scan.succeed (Toplevel.proof Proof.chain));
val _ =
Outer_Syntax.command @{command_keyword from} "forward chaining from given facts"
(facts >> (Toplevel.proof o Proof.from_thmss_cmd));
val _ =
Outer_Syntax.command @{command_keyword with} "forward chaining from given and current facts"
(facts >> (Toplevel.proof o Proof.with_thmss_cmd));
val _ =
Outer_Syntax.command @{command_keyword note} "define facts"
(Parse_Spec.name_facts >> (Toplevel.proof o Proof.note_thmss_cmd));
val _ =
Outer_Syntax.command @{command_keyword supply} "define facts during goal refinement (unstructured)"
(Parse_Spec.name_facts >> (Toplevel.proof o Proof.supply_cmd));
val _ =
Outer_Syntax.command @{command_keyword using} "augment goal facts"
(facts >> (Toplevel.proof o Proof.using_cmd));
val _ =
Outer_Syntax.command @{command_keyword unfolding} "unfold definitions in goal and facts"
(facts >> (Toplevel.proof o Proof.unfolding_cmd));
in end\<close>
subsubsection \<open>Proof context\<close>
ML \<open>
local
val structured_statement =
Parse_Spec.statement -- Parse_Spec.if_statement' -- Parse.for_fixes
>> (fn ((shows, assumes), fixes) => (fixes, assumes, shows));
val _ =
Outer_Syntax.command @{command_keyword fix} "fix local variables (Skolem constants)"
(Parse.fixes >> (Toplevel.proof o Proof.fix_cmd));
val _ =
Outer_Syntax.command @{command_keyword assume} "assume propositions"
(structured_statement >> (fn (a, b, c) => Toplevel.proof (Proof.assume_cmd a b c)));
val _ =
Outer_Syntax.command @{command_keyword presume} "assume propositions, to be established later"
(structured_statement >> (fn (a, b, c) => Toplevel.proof (Proof.presume_cmd a b c)));
val _ =
Outer_Syntax.command @{command_keyword def} "local definition (non-polymorphic)"
(Parse.and_list1
(Parse_Spec.opt_thm_name ":" --
((Parse.binding -- Parse.opt_mixfix) --
((@{keyword "\<equiv>"} || @{keyword "=="}) |-- Parse.!!! Parse.termp)))
>> (Toplevel.proof o Proof.def_cmd));
val _ =
Outer_Syntax.command @{command_keyword consider} "state cases rule"
(Parse_Spec.obtains >> (Toplevel.proof' o Obtain.consider_cmd));
val _ =
Outer_Syntax.command @{command_keyword obtain} "generalized elimination"
(Parse.parbinding -- Scan.optional (Parse.fixes --| Parse.where_) [] -- Parse_Spec.statement
>> (fn ((x, y), z) => Toplevel.proof' (Obtain.obtain_cmd x y z)));
val _ =
Outer_Syntax.command @{command_keyword guess} "wild guessing (unstructured)"
(Scan.optional Parse.fixes [] >> (Toplevel.proof' o Obtain.guess_cmd));
val _ =
Outer_Syntax.command @{command_keyword let} "bind text variables"
(Parse.and_list1 (Parse.and_list1 Parse.term -- (@{keyword "="} |-- Parse.term))
>> (Toplevel.proof o Proof.let_bind_cmd));
val _ =
Outer_Syntax.command @{command_keyword write} "add concrete syntax for constants / fixed variables"
(Parse.syntax_mode -- Parse.and_list1 (Parse.const -- Parse.mixfix)
>> (fn (mode, args) => Toplevel.proof (Proof.write_cmd mode args)));
val _ =
Outer_Syntax.command @{command_keyword case} "invoke local context"
(Parse_Spec.opt_thm_name ":" --
(@{keyword "("} |--
Parse.!!! (Parse.position Parse.xname -- Scan.repeat (Parse.maybe Parse.binding)
--| @{keyword ")"}) ||
Parse.position Parse.xname >> rpair []) >> (Toplevel.proof o Proof.case_cmd));
in end\<close>
subsubsection \<open>Proof structure\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword "{"} "begin explicit proof block"
(Scan.succeed (Toplevel.proof Proof.begin_block));
val _ =
Outer_Syntax.command @{command_keyword "}"} "end explicit proof block"
(Scan.succeed (Toplevel.proof Proof.end_block));
val _ =
Outer_Syntax.command @{command_keyword next} "enter next proof block"
(Scan.succeed (Toplevel.proof Proof.next_block));
in end\<close>
subsubsection \<open>End proof\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword qed} "conclude proof"
(Scan.option Method.parse >> (fn m =>
(Option.map Method.report m;
Isar_Cmd.qed m)));
val _ =
Outer_Syntax.command @{command_keyword by} "terminal backward proof"
(Method.parse -- Scan.option Method.parse >> (fn (m1, m2) =>
(Method.report m1;
Option.map Method.report m2;
Isar_Cmd.terminal_proof (m1, m2))));
val _ =
Outer_Syntax.command @{command_keyword ".."} "default proof"
(Scan.succeed Isar_Cmd.default_proof);
val _ =
Outer_Syntax.command @{command_keyword "."} "immediate proof"
(Scan.succeed Isar_Cmd.immediate_proof);
val _ =
Outer_Syntax.command @{command_keyword done} "done proof"
(Scan.succeed Isar_Cmd.done_proof);
val _ =
Outer_Syntax.command @{command_keyword sorry} "skip proof (quick-and-dirty mode only!)"
(Scan.succeed Isar_Cmd.skip_proof);
val _ =
Outer_Syntax.command @{command_keyword "\<proof>"} "dummy proof (quick-and-dirty mode only!)"
(Scan.succeed Isar_Cmd.skip_proof);
val _ =
Outer_Syntax.command @{command_keyword oops} "forget proof"
(Scan.succeed (Toplevel.forget_proof true));
in end\<close>
subsubsection \<open>Proof steps\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword defer} "shuffle internal proof state"
(Scan.optional Parse.nat 1 >> (Toplevel.proof o Proof.defer));
val _ =
Outer_Syntax.command @{command_keyword prefer} "shuffle internal proof state"
(Parse.nat >> (Toplevel.proof o Proof.prefer));
val _ =
Outer_Syntax.command @{command_keyword apply} "initial goal refinement step (unstructured)"
(Method.parse >> (fn m => (Method.report m; Toplevel.proofs (Proof.apply m))));
val _ =
Outer_Syntax.command @{command_keyword apply_end} "terminal goal refinement step (unstructured)"
(Method.parse >> (fn m => (Method.report m; Toplevel.proofs (Proof.apply_end m))));
val _ =
Outer_Syntax.command @{command_keyword proof} "backward proof step"
(Scan.option Method.parse >> (fn m =>
(Option.map Method.report m; Toplevel.proofs (Proof.proof m))));
in end\<close>
subsubsection \<open>Subgoal focus\<close>
ML \<open>
local
val opt_fact_binding =
Scan.optional (Parse.binding -- Parse.opt_attribs || Parse.attribs >> pair Binding.empty)
Attrib.empty_binding;
val for_params =
Scan.optional
(@{keyword "for"} |--
Parse.!!! ((Scan.option Parse.dots >> is_some) --
(Scan.repeat1 (Parse.position (Parse.maybe Parse.name)))))
(false, []);
val _ =
Outer_Syntax.command @{command_keyword subgoal}
"focus on first subgoal within backward refinement"
(opt_fact_binding -- (Scan.option (@{keyword "premises"} |-- Parse.!!! opt_fact_binding)) --
for_params >> (fn ((a, b), c) =>
Toplevel.proofs (Seq.make_results o Seq.single o #2 o Subgoal.subgoal_cmd a b c)));
in end\<close>
subsubsection \<open>Calculation\<close>
ML \<open>
local
val calculation_args =
Scan.option (@{keyword "("} |-- Parse.!!! ((Parse.xthms1 --| @{keyword ")"})));
val _ =
Outer_Syntax.command @{command_keyword also} "combine calculation and current facts"
(calculation_args >> (Toplevel.proofs' o Calculation.also_cmd));
val _ =
Outer_Syntax.command @{command_keyword finally}
"combine calculation and current facts, exhibit result"
(calculation_args >> (Toplevel.proofs' o Calculation.finally_cmd));
val _ =
Outer_Syntax.command @{command_keyword moreover} "augment calculation by current facts"
(Scan.succeed (Toplevel.proof' Calculation.moreover));
val _ =
Outer_Syntax.command @{command_keyword ultimately}
"augment calculation by current facts, exhibit result"
(Scan.succeed (Toplevel.proof' Calculation.ultimately));
val _ =
Outer_Syntax.command @{command_keyword print_trans_rules} "print transitivity rules"
(Scan.succeed (Toplevel.keep (Calculation.print_rules o Toplevel.context_of)));
in end\<close>
subsubsection \<open>Proof navigation\<close>
ML \<open>
local
fun report_back () =
Output.report [Markup.markup Markup.bad "Explicit backtracking"];
val _ =
Outer_Syntax.command @{command_keyword back} "explicit backtracking of proof command"
(Scan.succeed
(Toplevel.actual_proof (fn prf => (report_back (); Proof_Node.back prf)) o
Toplevel.skip_proof report_back));
in end\<close>
subsection \<open>Diagnostic commands (for interactive mode only)\<close>
ML \<open>
local
val opt_modes =
Scan.optional (@{keyword "("} |-- Parse.!!! (Scan.repeat1 Parse.xname --| @{keyword ")"})) [];
val _ =
Outer_Syntax.command @{command_keyword help}
"retrieve outer syntax commands according to name patterns"
(Scan.repeat Parse.name >>
(fn pats => Toplevel.keep (fn st => Outer_Syntax.help (Toplevel.theory_of st) pats)));
val _ =
Outer_Syntax.command @{command_keyword print_commands} "print outer syntax commands"
(Scan.succeed (Toplevel.keep (Outer_Syntax.print_commands o Toplevel.theory_of)));
val _ =
Outer_Syntax.command @{command_keyword print_options} "print configuration options"
(Parse.opt_bang >> (fn b => Toplevel.keep (Attrib.print_options b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_context}
"print context of local theory target"
(Scan.succeed (Toplevel.keep (Pretty.writeln_chunks o Toplevel.pretty_context)));
val _ =
Outer_Syntax.command @{command_keyword print_theory}
"print logical theory contents"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Proof_Display.pretty_theory b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_definitions}
"print dependencies of definitional theory content"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Proof_Display.pretty_definitions b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_syntax}
"print inner syntax of context"
(Scan.succeed (Toplevel.keep (Proof_Context.print_syntax o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_defn_rules}
"print definitional rewrite rules of context"
(Scan.succeed (Toplevel.keep (Local_Defs.print_rules o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_abbrevs}
"print constant abbreviations of context"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Proof_Context.print_abbrevs b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_theorems}
"print theorems of local theory or proof context"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Pretty.chunks o Isar_Cmd.pretty_theorems b)));
val _ =
Outer_Syntax.command @{command_keyword print_locales}
"print locales of this theory"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Locale.print_locales b o Toplevel.theory_of)));
val _ =
Outer_Syntax.command @{command_keyword print_classes}
"print classes of this theory"
(Scan.succeed (Toplevel.keep (Class.print_classes o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_locale}
"print locale of this theory"
(Parse.opt_bang -- Parse.position Parse.xname >> (fn (b, name) =>
Toplevel.keep (fn state => Locale.print_locale (Toplevel.theory_of state) b name)));
val _ =
Outer_Syntax.command @{command_keyword print_interps}
"print interpretations of locale for this theory or proof context"
(Parse.position Parse.xname >> (fn name =>
Toplevel.keep (fn state => Locale.print_registrations (Toplevel.context_of state) name)));
val _ =
Outer_Syntax.command @{command_keyword print_dependencies}
"print dependencies of locale expression"
(Parse.opt_bang -- Parse_Spec.locale_expression >> (fn (b, expr) =>
Toplevel.keep (fn state => Expression.print_dependencies (Toplevel.context_of state) b expr)));
val _ =
Outer_Syntax.command @{command_keyword print_attributes}
"print attributes of this theory"
(Parse.opt_bang >> (fn b => Toplevel.keep (Attrib.print_attributes b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_simpset}
"print context of Simplifier"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Pretty.writeln o Simplifier.pretty_simpset b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_rules} "print intro/elim rules"
(Scan.succeed (Toplevel.keep (Context_Rules.print_rules o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_methods} "print methods of this theory"
(Parse.opt_bang >> (fn b => Toplevel.keep (Method.print_methods b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_antiquotations}
"print document antiquotations"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Thy_Output.print_antiquotations b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_ML_antiquotations}
"print ML antiquotations"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (ML_Context.print_antiquotations b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword locale_deps} "visualize locale dependencies"
(Scan.succeed
(Toplevel.keep (Toplevel.theory_of #> (fn thy =>
Locale.pretty_locale_deps thy
|> map (fn {name, parents, body} =>
((name, Graph_Display.content_node (Locale.extern thy name) [body]), parents))
|> Graph_Display.display_graph_old))));
val _ =
Outer_Syntax.command @{command_keyword print_term_bindings}
"print term bindings of proof context"
(Scan.succeed
(Toplevel.keep
(Pretty.writeln_chunks o Proof_Context.pretty_term_bindings o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_facts} "print facts of proof context"
(Parse.opt_bang >> (fn b =>
Toplevel.keep (Proof_Context.print_local_facts b o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_cases} "print cases of proof context"
(Scan.succeed
(Toplevel.keep (Pretty.writeln_chunks o Proof_Context.pretty_cases o Toplevel.context_of)));
val _ =
Outer_Syntax.command @{command_keyword print_statement}
"print theorems as long statements"
(opt_modes -- Parse.xthms1 >> Isar_Cmd.print_stmts);
val _ =
Outer_Syntax.command @{command_keyword thm} "print theorems"
(opt_modes -- Parse.xthms1 >> Isar_Cmd.print_thms);
val _ =
Outer_Syntax.command @{command_keyword prf} "print proof terms of theorems"
(opt_modes -- Scan.option Parse.xthms1 >> Isar_Cmd.print_prfs false);
val _ =
Outer_Syntax.command @{command_keyword full_prf} "print full proof terms of theorems"
(opt_modes -- Scan.option Parse.xthms1 >> Isar_Cmd.print_prfs true);
val _ =
Outer_Syntax.command @{command_keyword prop} "read and print proposition"
(opt_modes -- Parse.term >> Isar_Cmd.print_prop);
val _ =
Outer_Syntax.command @{command_keyword term} "read and print term"
(opt_modes -- Parse.term >> Isar_Cmd.print_term);
val _ =
Outer_Syntax.command @{command_keyword typ} "read and print type"
(opt_modes -- (Parse.typ -- Scan.option (@{keyword "::"} |-- Parse.!!! Parse.sort))
>> Isar_Cmd.print_type);
val _ =
Outer_Syntax.command @{command_keyword print_codesetup} "print code generator setup"
(Scan.succeed (Toplevel.keep (Code.print_codesetup o Toplevel.theory_of)));
val _ =
Outer_Syntax.command @{command_keyword print_state}
"print current proof state (if present)"
(opt_modes >> (fn modes =>
Toplevel.keep (Print_Mode.with_modes modes (Output.state o Toplevel.string_of_state))));
val _ =
Outer_Syntax.command @{command_keyword welcome} "print welcome message"
(Scan.succeed (Toplevel.keep (fn _ => writeln (Session.welcome ()))));
val _ =
Outer_Syntax.command @{command_keyword display_drafts}
"display raw source files with symbols"
(Scan.repeat1 Parse.path >> (fn names =>
Toplevel.keep (fn _ => ignore (Present.display_drafts (map Path.explode names)))));
in end\<close>
subsection \<open>Dependencies\<close>
ML \<open>
local
val theory_bounds =
Parse.position Parse.theory_xname >> single ||
(@{keyword "("} |-- Parse.enum "|" (Parse.position Parse.theory_xname) --| @{keyword ")"});
val _ =
Outer_Syntax.command @{command_keyword thy_deps} "visualize theory dependencies"
(Scan.option theory_bounds -- Scan.option theory_bounds >>
(fn args => Toplevel.keep (fn st => Thy_Deps.thy_deps_cmd (Toplevel.context_of st) args)));
val class_bounds =
Parse.sort >> single ||
(@{keyword "("} |-- Parse.enum "|" Parse.sort --| @{keyword ")"});
val _ =
Outer_Syntax.command @{command_keyword class_deps} "visualize class dependencies"
(Scan.option class_bounds -- Scan.option class_bounds >> (fn args =>
Toplevel.keep (fn st => Class_Deps.class_deps_cmd (Toplevel.context_of st) args)));
val _ =
Outer_Syntax.command @{command_keyword thm_deps} "visualize theorem dependencies"
(Parse.xthms1 >> (fn args =>
Toplevel.keep (fn st =>
Thm_Deps.thm_deps (Toplevel.theory_of st)
(Attrib.eval_thms (Toplevel.context_of st) args))));
val thy_names =
Scan.repeat1 (Scan.unless Parse.minus (Parse.position Parse.theory_xname));
val _ =
Outer_Syntax.command @{command_keyword unused_thms} "find unused theorems"
(Scan.option ((thy_names --| Parse.minus) -- Scan.option thy_names) >> (fn opt_range =>
Toplevel.keep (fn st =>
let
val thy = Toplevel.theory_of st;
val ctxt = Toplevel.context_of st;
fun pretty_thm (a, th) = Proof_Context.pretty_fact ctxt (a, [th]);
val check = Theory.check ctxt;
in
Thm_Deps.unused_thms
(case opt_range of
NONE => (Theory.parents_of thy, [thy])
| SOME (xs, NONE) => (map check xs, [thy])
| SOME (xs, SOME ys) => (map check xs, map check ys))
|> map pretty_thm |> Pretty.writeln_chunks
end)));
in end\<close>
subsubsection \<open>Find consts and theorems\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword find_consts}
"find constants by name / type patterns"
(Find_Consts.query_parser >> (fn spec =>
Toplevel.keep (fn st =>
Pretty.writeln (Find_Consts.pretty_consts (Toplevel.context_of st) spec))));
val options =
Scan.optional
(Parse.$$$ "(" |--
Parse.!!! (Scan.option Parse.nat --
Scan.optional (Parse.reserved "with_dups" >> K false) true --| Parse.$$$ ")"))
(NONE, true);
val _ =
Outer_Syntax.command @{command_keyword find_theorems}
"find theorems meeting specified criteria"
(options -- Find_Theorems.query_parser >> (fn ((opt_lim, rem_dups), spec) =>
Toplevel.keep (fn st =>
Pretty.writeln
(Find_Theorems.pretty_theorems (Find_Theorems.proof_state st) opt_lim rem_dups spec))));
in end\<close>
subsection \<open>Code generation\<close>
ML \<open>
local
val _ =
Outer_Syntax.command @{command_keyword code_datatype}
"define set of code datatype constructors"
(Scan.repeat1 Parse.term >> (Toplevel.theory o Code.add_datatype_cmd));
in end\<close>
subsection \<open>Extraction of programs from proofs\<close>
ML \<open>
local
val parse_vars = Scan.optional (Parse.$$$ "(" |-- Parse.list1 Parse.name --| Parse.$$$ ")") [];
val _ =
Outer_Syntax.command @{command_keyword realizers}
"specify realizers for primitive axioms / theorems, together with correctness proof"
(Scan.repeat1 (Parse.xname -- parse_vars --| Parse.$$$ ":" -- Parse.string -- Parse.string) >>
(fn xs => Toplevel.theory (fn thy => Extraction.add_realizers
(map (fn (((a, vs), s1), s2) => (Global_Theory.get_thm thy a, (vs, s1, s2))) xs) thy)));
val _ =
Outer_Syntax.command @{command_keyword realizability}
"add equations characterizing realizability"
(Scan.repeat1 Parse.string >> (Toplevel.theory o Extraction.add_realizes_eqns));
val _ =
Outer_Syntax.command @{command_keyword extract_type}
"add equations characterizing type of extracted program"
(Scan.repeat1 Parse.string >> (Toplevel.theory o Extraction.add_typeof_eqns));
val _ =
Outer_Syntax.command @{command_keyword extract} "extract terms from proofs"
(Scan.repeat1 (Parse.xname -- parse_vars) >> (fn xs => Toplevel.theory (fn thy =>
Extraction.extract (map (apfst (Global_Theory.get_thm thy)) xs) thy)));
in end\<close>
section \<open>Auxiliary lemmas\<close>
subsection \<open>Meta-level connectives in assumptions\<close>
lemma meta_mp:
assumes "PROP P \<Longrightarrow> PROP Q" and "PROP P"
shows "PROP Q"
by (rule \<open>PROP P \<Longrightarrow> PROP Q\<close> [OF \<open>PROP P\<close>])
lemmas meta_impE = meta_mp [elim_format]
lemma meta_spec:
assumes "\<And>x. PROP P x"
shows "PROP P x"
by (rule \<open>\<And>x. PROP P x\<close>)
lemmas meta_allE = meta_spec [elim_format]
lemma swap_params:
"(\<And>x y. PROP P x y) \<equiv> (\<And>y x. PROP P x y)" ..
subsection \<open>Meta-level conjunction\<close>
lemma all_conjunction:
"(\<And>x. PROP A x &&& PROP B x) \<equiv> ((\<And>x. PROP A x) &&& (\<And>x. PROP B x))"
proof
assume conj: "\<And>x. PROP A x &&& PROP B x"
show "(\<And>x. PROP A x) &&& (\<And>x. PROP B x)"
proof -
fix x
from conj show "PROP A x" by (rule conjunctionD1)
from conj show "PROP B x" by (rule conjunctionD2)
qed
next
assume conj: "(\<And>x. PROP A x) &&& (\<And>x. PROP B x)"
fix x
show "PROP A x &&& PROP B x"
proof -
show "PROP A x" by (rule conj [THEN conjunctionD1, rule_format])
show "PROP B x" by (rule conj [THEN conjunctionD2, rule_format])
qed
qed
lemma imp_conjunction:
"(PROP A \<Longrightarrow> PROP B &&& PROP C) \<equiv> ((PROP A \<Longrightarrow> PROP B) &&& (PROP A \<Longrightarrow> PROP C))"
proof
assume conj: "PROP A \<Longrightarrow> PROP B &&& PROP C"
show "(PROP A \<Longrightarrow> PROP B) &&& (PROP A \<Longrightarrow> PROP C)"
proof -
assume "PROP A"
from conj [OF \<open>PROP A\<close>] show "PROP B" by (rule conjunctionD1)
from conj [OF \<open>PROP A\<close>] show "PROP C" by (rule conjunctionD2)
qed
next
assume conj: "(PROP A \<Longrightarrow> PROP B) &&& (PROP A \<Longrightarrow> PROP C)"
assume "PROP A"
show "PROP B &&& PROP C"
proof -
from \<open>PROP A\<close> show "PROP B" by (rule conj [THEN conjunctionD1])
from \<open>PROP A\<close> show "PROP C" by (rule conj [THEN conjunctionD2])
qed
qed
lemma conjunction_imp:
"(PROP A &&& PROP B \<Longrightarrow> PROP C) \<equiv> (PROP A \<Longrightarrow> PROP B \<Longrightarrow> PROP C)"
proof
assume r: "PROP A &&& PROP B \<Longrightarrow> PROP C"
assume ab: "PROP A" "PROP B"
show "PROP C"
proof (rule r)
from ab show "PROP A &&& PROP B" .
qed
next
assume r: "PROP A \<Longrightarrow> PROP B \<Longrightarrow> PROP C"
assume conj: "PROP A &&& PROP B"
show "PROP C"
proof (rule r)
from conj show "PROP A" by (rule conjunctionD1)
from conj show "PROP B" by (rule conjunctionD2)
qed
qed
end