(* Title: Pure/proofterm.ML
Author: Stefan Berghofer, TU Muenchen
LF style proof terms.
*)
infix 8 % %% %>;
signature PROOFTERM =
sig
type thm_header =
{serial: serial, command_pos: Position.T, theory_name: string, thm_name: Thm_Name.P,
prop: term, types: typ list option}
type thm_body
type thm_node
datatype proof =
MinProof
| PBound of int
| Abst of string * typ option * proof
| AbsP of string * term option * proof
| % of proof * term option
| %% of proof * proof
| Hyp of term
| PAxm of string * term * typ list option
| PClass of typ * class
| Oracle of string * term * typ list option
| PThm of thm_header * thm_body
and proof_body = PBody of
{oracles: ((string * Position.T) * term option) Ord_List.T,
thms: (serial * thm_node) Ord_List.T,
zboxes: ZTerm.zboxes,
zproof: zproof,
proof: proof}
type oracle = (string * Position.T) * term option
type thm = serial * thm_node
exception MIN_PROOF of unit
val zproof_of: proof_body -> zproof
val proof_of: proof_body -> proof
val join_proof: proof_body future -> proof
val map_proof_of: (proof -> proof) -> proof_body -> proof_body
val thm_header: serial -> Position.T -> string -> Thm_Name.P -> term -> typ list option ->
thm_header
val thm_body: proof_body -> thm_body
val thm_body_proof_raw: thm_body -> proof
val thm_body_proof_open: thm_body -> proof
val thm_node_theory_name: thm_node -> string
val thm_node_name: thm_node -> Thm_Name.T
val thm_node_prop: thm_node -> term
val thm_node_body: thm_node -> proof_body future
val thm_node_thms: thm_node -> thm list
val join_thms: thm list -> proof_body list
val make_thm: thm_header -> thm_body -> thm
val fold_proof_atoms: bool -> (proof -> 'a -> 'a) -> proof list -> 'a -> 'a
val fold_body_thms:
({serial: serial, thm_name: Thm_Name.T, prop: term, body: proof_body} -> 'a -> 'a) ->
proof_body list -> 'a -> 'a
val oracle_ord: oracle ord
val thm_ord: thm ord
val union_oracles: oracle Ord_List.T -> oracle Ord_List.T -> oracle Ord_List.T
val unions_oracles: oracle Ord_List.T list -> oracle Ord_List.T
val union_thms: thm Ord_List.T -> thm Ord_List.T -> thm Ord_List.T
val unions_thms: thm Ord_List.T list -> thm Ord_List.T
val no_proof_body: zproof -> proof -> proof_body
val no_thm_names: proof -> proof
val no_thm_proofs: proof -> proof
val no_body_proofs: proof -> proof
val proof_to_zproof: theory -> proof -> zproof
val encode_standard_term: theory -> term XML.Encode.T
val encode_standard_proof: theory -> proof XML.Encode.T
val encode: theory -> proof XML.Encode.T
val encode_body: theory -> proof_body XML.Encode.T
val decode: theory -> proof XML.Decode.T
val decode_body: theory -> proof_body XML.Decode.T
val %> : proof * term -> proof
(*primitive operations*)
val zproof_enabled: int -> bool
val proof_enabled: int -> bool
val oracle_enabled: int -> bool
val get_proofs_level: unit -> int
val proofs: int Unsynchronized.ref
val any_proofs_enabled: unit -> bool
val proof_combt: proof * term list -> proof
val proof_combt': proof * term option list -> proof
val proof_combP: proof * proof list -> proof
val strip_combt: proof -> proof * term option list
val strip_combP: proof -> proof * proof list
val any_head_of: proof -> proof
val term_head_of: proof -> proof
val proof_head_of: proof -> proof
val compact_proof: proof -> bool
val strip_thm_body: proof_body -> proof_body
val map_proof_same: term Same.operation -> typ Same.operation
-> (typ * class -> proof) -> proof Same.operation
val map_proof_terms_same: term Same.operation -> typ Same.operation -> proof Same.operation
val map_proof_types_same: typ Same.operation -> proof Same.operation
val map_proof_terms: (term -> term) -> (typ -> typ) -> proof -> proof
val map_proof_types: (typ -> typ) -> proof -> proof
val fold_proof_terms: (term -> 'a -> 'a) -> proof -> 'a -> 'a
val fold_proof_terms_types: (term -> 'a -> 'a) -> (typ -> 'a -> 'a) -> proof -> 'a -> 'a
val maxidx_proof: proof -> int -> int
val change_types: typ list option -> proof -> proof
val abstract_over: term -> proof -> proof
val incr_bv_same: int -> int -> int -> int -> proof Same.operation
val incr_bv: int -> int -> int -> int -> proof -> proof
val incr_boundvars: int -> int -> proof -> proof
val prf_loose_bvar1: proof -> int -> bool
val prf_loose_Pbvar1: proof -> int -> bool
val prf_add_loose_bnos: int -> int -> proof -> int list * int list -> int list * int list
val norm_proof: Envir.env -> proof -> proof
val norm_proof_remove_types: Envir.env -> proof -> proof
val subst_bounds: term list -> proof -> proof
val subst_pbounds: proof list -> proof -> proof
val freeze_thaw_prf: proof -> proof * (proof -> proof)
(*proof terms for specific inference rules*)
val trivial_proof: proof
val implies_intr_proof: term -> proof -> proof
val implies_intr_proof': term -> proof -> proof
val forall_intr_proof: string * term -> typ option -> proof -> proof
val forall_intr_proof': term -> proof -> proof
val varifyT_proof: ((string * sort) * (indexname * sort)) list -> proof -> proof
val legacy_freezeT: term -> proof -> proof
val rotate_proof: term list -> term -> (string * typ) list -> term list -> int -> proof -> proof
val permute_prems_proof: term list -> int -> int -> proof -> proof
val generalize_proof: Names.set * Names.set -> int -> term -> proof -> proof
val instantiate: typ TVars.table * term Vars.table -> proof -> proof
val lift_proof: term -> int -> term list -> proof -> proof
val incr_indexes: int -> proof -> proof
val assumption_proof: term list -> term -> int -> proof -> proof
val bicompose_proof: Envir.env -> int -> bool -> term list -> term list -> term option ->
term list -> int -> int -> proof -> proof -> proof
val reflexive_axm: proof
val symmetric_axm: proof
val transitive_axm: proof
val equal_intr_axm: proof
val equal_elim_axm: proof
val abstract_rule_axm: proof
val combination_axm: proof
val reflexive_proof: proof
val symmetric_proof: proof -> proof
val transitive_proof: typ -> term -> proof -> proof -> proof
val equal_intr_proof: term -> term -> proof -> proof -> proof
val equal_elim_proof: term -> term -> proof -> proof -> proof
val abstract_rule_proof: string * term -> proof -> proof
val combination_proof: term -> term -> term -> term -> proof -> proof -> proof
val could_unify: proof * proof -> bool
type sorts_proof = (class * class -> proof) * (string * class list list * class -> proof)
val of_sort_proof: Sorts.algebra -> sorts_proof -> (typ * class -> proof) -> typ * sort -> proof list
val axiom_proof: string -> term -> proof
val oracle_proof: string -> term -> proof
val shrink_proof: proof -> proof
(*rewriting on proof terms*)
val add_prf_rrule: proof * proof -> theory -> theory
val add_prf_rproc: (typ list -> term option list -> proof -> (proof * proof) option) -> theory -> theory
val set_preproc: (theory -> proof -> proof) -> theory -> theory
val apply_preproc: theory -> proof -> proof
val forall_intr_variables_term: term -> term
val forall_intr_variables: term -> proof -> proof
val no_skel: proof
val normal_skel: proof
val rewrite_proof: theory -> (proof * proof) list *
(typ list -> term option list -> proof -> (proof * proof) option) list -> proof -> proof
val rewrite_proof_notypes: (proof * proof) list *
(typ list -> term option list -> proof -> (proof * proof) option) list -> proof -> proof
val rew_proof: theory -> proof -> proof
val reconstruct_proof: theory -> term -> proof -> proof
val prop_of': term list -> proof -> term
val prop_of: proof -> term
val expand_name_empty: thm_header -> Thm_Name.P option
val expand_proof: theory -> (thm_header -> Thm_Name.P option) -> proof -> proof
val export_enabled: unit -> bool
val export_standard_enabled: unit -> bool
val export_proof_boxes_required: theory -> bool
val export_proof_boxes: proof_body list -> unit
val fulfill_norm_proof: theory -> (serial * proof_body) list -> proof_body -> proof_body
val thm_proof: theory -> sorts_proof -> Thm_Name.P -> sort list -> term list ->
term -> (serial * proof_body future) list -> proof_body -> proof_body
val unconstrain_thm_proof: theory -> sorts_proof -> sort list ->
term -> (serial * proof_body future) list -> proof_body -> term * proof_body
val get_identity: sort list -> term list -> term -> proof ->
{serial: serial, theory_name: string, thm_name: Thm_Name.P} option
val get_approximative_name: sort list -> term list -> term -> proof -> Thm_Name.P
type thm_id = {serial: serial, theory_name: string}
val make_thm_id: serial * string -> thm_id
val thm_header_id: thm_header -> thm_id
val thm_id: thm -> thm_id
val get_id: sort list -> term list -> term -> proof -> thm_id option
val this_id: thm_id option -> thm_id -> bool
val proof_boxes: {excluded: thm_id -> bool, included: thm_id -> bool} ->
proof list -> (thm_header * proof) list (*exception MIN_PROOF*)
end
structure Proofterm : PROOFTERM =
struct
(** datatype proof **)
val proof_serial = Counter.make ();
type thm_header =
{serial: serial, command_pos: Position.T, theory_name: string, thm_name: Thm_Name.P,
prop: term, types: typ list option};
datatype proof =
MinProof
| PBound of int
| Abst of string * typ option * proof
| AbsP of string * term option * proof
| op % of proof * term option
| op %% of proof * proof
| Hyp of term
| PAxm of string * term * typ list option
| PClass of typ * class
| Oracle of string * term * typ list option
| PThm of thm_header * thm_body
and proof_body = PBody of
{oracles: ((string * Position.T) * term option) Ord_List.T,
thms: (serial * thm_node) Ord_List.T,
zboxes: ZTerm.zboxes,
zproof: zproof,
proof: proof}
and thm_body =
Thm_Body of {open_proof: proof -> proof, body: proof_body future}
and thm_node =
Thm_Node of {theory_name: string, thm_name: Thm_Name.T, prop: term,
body: proof_body future, export: unit lazy, consolidate: unit lazy};
type oracle = (string * Position.T) * term option;
val oracle_ord: oracle ord =
prod_ord (prod_ord fast_string_ord Position.ord) (option_ord Term_Ord.fast_term_ord);
type thm = serial * thm_node;
val thm_ord: thm ord = fn ((i, _), (j, _)) => int_ord (j, i);
exception MIN_PROOF of unit;
fun proof_of (PBody {proof, ...}) = proof;
fun zproof_of (PBody {zproof, ...}) = zproof;
val join_proof = Future.join #> proof_of;
fun map_proof_of f (PBody {oracles, thms, zboxes, zproof, proof}) =
PBody {oracles = oracles, thms = thms, zboxes = zboxes, zproof = zproof, proof = f proof};
fun no_proof (PBody {oracles, thms, zboxes, zproof, ...}) =
PBody {oracles = oracles, thms = thms, zboxes = zboxes, zproof = zproof, proof = MinProof};
fun thm_header serial command_pos theory_name thm_name prop types : thm_header =
{serial = serial, command_pos = command_pos, theory_name = theory_name, thm_name = thm_name,
prop = prop, types = types};
fun thm_body body = Thm_Body {open_proof = I, body = Future.value body};
fun thm_body_proof_raw (Thm_Body {body, ...}) = join_proof body;
fun thm_body_proof_open (Thm_Body {open_proof, body, ...}) = open_proof (join_proof body);
fun rep_thm_node (Thm_Node args) = args;
val thm_node_theory_name = #theory_name o rep_thm_node;
val thm_node_name = #thm_name o rep_thm_node;
val thm_node_prop = #prop o rep_thm_node;
val thm_node_body = #body o rep_thm_node;
val thm_node_thms = thm_node_body #> Future.join #> (fn PBody {thms, ...} => thms);
val thm_node_export = #export o rep_thm_node;
val thm_node_consolidate = #consolidate o rep_thm_node;
fun join_thms (thms: thm list) =
Future.joins (map (thm_node_body o #2) thms);
val consolidate_bodies =
maps (fn PBody {thms, ...} => map (thm_node_consolidate o #2) thms)
#> Lazy.consolidate #> map Lazy.force #> ignore;
fun make_thm_node theory_name thm_name prop body export =
let
val consolidate =
Lazy.lazy_name "Proofterm.make_thm_node" (fn () =>
let val PBody {thms, ...} = Future.join body
in consolidate_bodies (join_thms thms) end);
in
Thm_Node {theory_name = theory_name, thm_name = thm_name, prop = prop, body = body,
export = export, consolidate = consolidate}
end;
val no_export = Lazy.value ();
fun make_thm
({serial, theory_name, thm_name = (thm_name, _), prop, ...}: thm_header)
(Thm_Body {body, ...}) =
(serial, make_thm_node theory_name thm_name prop body no_export);
(* proof atoms *)
fun fold_proof_atoms all f =
let
fun app (Abst (_, _, prf)) = app prf
| app (AbsP (_, _, prf)) = app prf
| app (prf % _) = app prf
| app (prf1 %% prf2) = app prf1 #> app prf2
| app (prf as PThm ({serial = i, ...}, Thm_Body {body, ...})) = (fn (x, seen) =>
if Intset.member seen i then (x, seen)
else
let val (x', seen') =
(if all then app (join_proof body) else I) (x, Intset.insert i seen)
in (f prf x', seen') end)
| app prf = (fn (x, seen) => (f prf x, seen));
in fn prfs => fn x => #1 (fold app prfs (x, Intset.empty)) end;
fun fold_body_thms f =
let
fun app (PBody {thms, ...}) =
tap join_thms thms |> fold (fn (i, thm_node) => fn (x, seen) =>
if Intset.member seen i then (x, seen)
else
let
val thm_name = thm_node_name thm_node;
val prop = thm_node_prop thm_node;
val body = Future.join (thm_node_body thm_node);
val (x', seen') = app body (x, Intset.insert i seen);
in (f {serial = i, thm_name = thm_name, prop = prop, body = body} x', seen') end);
in fn bodies => fn x => #1 (fold app bodies (x, Intset.empty)) end;
(* proof body *)
val union_oracles = Ord_List.union oracle_ord;
val unions_oracles = Ord_List.unions oracle_ord;
val union_thms = Ord_List.union thm_ord;
val unions_thms = Ord_List.unions thm_ord;
fun no_proof_body zproof proof =
PBody {oracles = [], thms = [], zboxes = [], zproof = zproof, proof = proof};
val no_thm_body = thm_body (no_proof_body ZNop MinProof);
fun no_thm_names (Abst (x, T, prf)) = Abst (x, T, no_thm_names prf)
| no_thm_names (AbsP (x, t, prf)) = AbsP (x, t, no_thm_names prf)
| no_thm_names (prf % t) = no_thm_names prf % t
| no_thm_names (prf1 %% prf2) = no_thm_names prf1 %% no_thm_names prf2
| no_thm_names (PThm ({serial, command_pos, theory_name, thm_name = _, prop, types}, thm_body)) =
PThm (thm_header serial command_pos theory_name Thm_Name.none prop types, thm_body)
| no_thm_names a = a;
fun no_thm_proofs (Abst (x, T, prf)) = Abst (x, T, no_thm_proofs prf)
| no_thm_proofs (AbsP (x, t, prf)) = AbsP (x, t, no_thm_proofs prf)
| no_thm_proofs (prf % t) = no_thm_proofs prf % t
| no_thm_proofs (prf1 %% prf2) = no_thm_proofs prf1 %% no_thm_proofs prf2
| no_thm_proofs (PThm (header, _)) = PThm (header, no_thm_body)
| no_thm_proofs a = a;
fun no_body_proofs (Abst (x, T, prf)) = Abst (x, T, no_body_proofs prf)
| no_body_proofs (AbsP (x, t, prf)) = AbsP (x, t, no_body_proofs prf)
| no_body_proofs (prf % t) = no_body_proofs prf % t
| no_body_proofs (prf1 %% prf2) = no_body_proofs prf1 %% no_body_proofs prf2
| no_body_proofs (PThm (header, Thm_Body {open_proof, body})) =
let
val PBody {zproof, proof, ...} = Future.join body;
val body' = Future.value (no_proof_body zproof proof);
val thm_body' = Thm_Body {open_proof = open_proof, body = body'};
in PThm (header, thm_body') end
| no_body_proofs a = a;
(** XML data representation **)
(* encode as zterm/zproof *)
fun proof_to_zproof thy =
let
val {ztyp, zterm} = ZTerm.zterm_cache thy;
val ztvar = ztyp #> (fn ZTVar v => v);
fun zproof_const name prop typargs =
let
val vs = rev ((fold_types o fold_atyps) (insert (op =) o ztvar) prop []);
val Ts = map ztyp typargs
in ZConstp ((name, zterm prop), (ZTVars.make (vs ~~ Ts), ZVars.empty)) end;
fun zproof MinProof = ZNop
| zproof (PBound i) = ZBoundp i
| zproof (Abst (a, SOME T, p)) = ZAbst (a, ztyp T, zproof p)
| zproof (AbsP (a, SOME t, p)) = ZAbsp (a, zterm t, zproof p)
| zproof (p % SOME t) = ZAppt (zproof p, zterm t)
| zproof (p %% q) = ZAppp (zproof p, zproof q)
| zproof (Hyp t) = ZHyp (zterm t)
| zproof (PAxm (a, prop, SOME Ts)) = zproof_const (ZAxiom a) prop Ts
| zproof (PClass (T, c)) = OFCLASSp (ztyp T, c)
| zproof (Oracle (a, prop, SOME Ts)) = zproof_const (ZOracle a) prop Ts
| zproof (PThm ({serial, theory_name, thm_name, prop, types = SOME Ts, ...}, _)) =
let val proof_name =
ZThm {theory_name = theory_name, thm_name = thm_name, serial = serial};
in zproof_const proof_name prop Ts end;
in zproof end;
fun encode_standard_term thy = ZTerm.zterm_of thy #> ZTerm.encode_zterm {typed_vars = false};
fun encode_standard_proof thy = proof_to_zproof thy #> ZTerm.encode_zproof {typed_vars = false};
(* encode *)
local
open XML.Encode Term_XML.Encode;
fun proof consts prf = prf |> variant
[fn MinProof => ([], []),
fn PBound a => ([], int a),
fn Abst (a, b, c) => ([a], pair (option typ) (proof consts) (b, c)),
fn AbsP (a, b, c) => ([a], pair (option (term consts)) (proof consts) (b, c)),
fn a % b => ([], pair (proof consts) (option (term consts)) (a, b)),
fn a %% b => ([], pair (proof consts) (proof consts) (a, b)),
fn Hyp a => ([], term consts a),
fn PAxm (a, b, c) => ([a], pair (term consts) (option (list typ)) (b, c)),
fn PClass (a, b) => ([b], typ a),
fn Oracle (a, b, c) => ([a], pair (term consts) (option (list typ)) (b, c)),
fn PThm ({serial, command_pos, theory_name, thm_name, prop, types}, Thm_Body {open_proof, body, ...}) =>
([int_atom serial, theory_name],
pair (properties o Position.properties_of)
(pair Thm_Name.encode_pos
(pair (term consts)
(pair (option (list typ)) (proof_body consts))))
(command_pos, (thm_name, (prop, (types, map_proof_of open_proof (Future.join body))))))]
and proof_body consts (PBody {oracles, thms, zboxes = _, zproof = _, proof = prf}) =
triple (list (pair (pair string (properties o Position.properties_of))
(option (term consts)))) (list (thm consts)) (proof consts) (oracles, thms, prf)
and thm consts (a, thm_node) =
pair int (pair string (pair Thm_Name.encode (pair (term consts) (proof_body consts))))
(a, (thm_node_theory_name thm_node, (thm_node_name thm_node, (thm_node_prop thm_node,
(Future.join (thm_node_body thm_node))))));
in
val encode = proof o Sign.consts_of;
val encode_body = proof_body o Sign.consts_of;
end;
(* decode *)
local
open XML.Decode Term_XML.Decode;
fun proof consts prf = prf |> variant
[fn ([], []) => MinProof,
fn ([], a) => PBound (int a),
fn ([a], b) => let val (c, d) = pair (option typ) (proof consts) b in Abst (a, c, d) end,
fn ([a], b) => let val (c, d) = pair (option (term consts)) (proof consts) b in AbsP (a, c, d) end,
fn ([], a) => op % (pair (proof consts) (option (term consts)) a),
fn ([], a) => op %% (pair (proof consts) (proof consts) a),
fn ([], a) => Hyp (term consts a),
fn ([a], b) => let val (c, d) = pair (term consts) (option (list typ)) b in PAxm (a, c, d) end,
fn ([b], a) => PClass (typ a, b),
fn ([a], b) => let val (c, d) = pair (term consts) (option (list typ)) b in Oracle (a, c, d) end,
fn ([ser, theory_name], b) =>
let
val ((command_pos, (thm_name, (prop, (types, body))))) =
pair (Position.of_properties o properties)
(pair Thm_Name.decode_pos
(pair (term consts) (pair (option (list typ)) (proof_body consts)))) b;
val header = thm_header (int_atom ser) command_pos theory_name thm_name prop types;
in PThm (header, thm_body body) end]
and proof_body consts x =
let
val (a, b, c) =
triple (list (pair (pair string (Position.of_properties o properties))
(option (term consts)))) (list (thm consts)) (proof consts) x;
in PBody {oracles = a, thms = b, zboxes = [], zproof = ZNop, proof = c} end
and thm consts x =
let
val (a, (b, (c, (d, e)))) =
pair int (pair string (pair Thm_Name.decode (pair (term consts) (proof_body consts)))) x
in (a, make_thm_node b c d (Future.value e) no_export) end;
in
val decode = proof o Sign.consts_of;
val decode_body = proof_body o Sign.consts_of;
end;
(** proof objects with different levels of detail **)
fun zproof_enabled proofs = proofs = 4 orelse proofs = 5 orelse proofs = 6;
fun proof_enabled proofs = proofs = 2 orelse proofs = 6;
fun oracle_enabled proofs = not (proofs = 0 orelse proofs = 4);
val proofs = Unsynchronized.ref 6;
fun get_proofs_level () =
let val proofs = ! proofs in
if 0 <= proofs andalso proofs <= 6 andalso proofs <> 3 then proofs
else error ("Illegal level of detail for proof objects: " ^ string_of_int proofs)
end;
fun any_proofs_enabled () =
let val proofs = get_proofs_level ()
in zproof_enabled proofs orelse proof_enabled proofs end;
fun (p %> t) = p % SOME t;
val proof_combt = Library.foldl (op %>);
val proof_combt' = Library.foldl (op %);
val proof_combP = Library.foldl (op %%);
fun strip_combt prf =
let
fun strip (p % t, ts) = strip (p, t :: ts)
| strip res = res;
in strip (prf, []) end;
fun strip_combP prf =
let
fun strip (p %% q, qs) = strip (p, q :: qs)
| strip res = res;
in strip (prf, []) end;
fun any_head_of (p %% _) = any_head_of p
| any_head_of (p % _) = any_head_of p
| any_head_of p = p;
fun term_head_of (p % _) = term_head_of p
| term_head_of p = p;
fun proof_head_of (p %% _) = proof_head_of p
| proof_head_of p = p;
val atomic_proof =
(fn Abst _ => false | AbsP _ => false
| op % _ => false | op %% _ => false
| MinProof => false
| _ => true);
fun compact_proof (p % _) = compact_proof p
| compact_proof (p %% q) = atomic_proof q andalso compact_proof p
| compact_proof p = atomic_proof p;
fun strip_thm_body (body as PBody {proof, ...}) =
(case term_head_of (proof_head_of proof) of
PThm (_, Thm_Body {body = body', ...}) => Future.join body'
| _ => body);
val mk_Abst = fold_rev (fn (x, _: typ) => fn prf => Abst (x, NONE, prf));
val mk_AbsP = fold_rev (fn _: term => fn prf => AbsP ("H", NONE, prf));
fun map_proof_same term typ ofclass =
let
val typs = Same.map typ;
fun proof (Abst (s, T, prf)) =
(Abst (s, Same.map_option typ T, Same.commit proof prf)
handle Same.SAME => Abst (s, T, proof prf))
| proof (AbsP (s, t, prf)) =
(AbsP (s, Same.map_option term t, Same.commit proof prf)
handle Same.SAME => AbsP (s, t, proof prf))
| proof (prf % t) =
(proof prf % Same.commit (Same.map_option term) t
handle Same.SAME => prf % Same.map_option term t)
| proof (prf1 %% prf2) =
(proof prf1 %% Same.commit proof prf2
handle Same.SAME => prf1 %% proof prf2)
| proof (PAxm (a, prop, SOME Ts)) = PAxm (a, prop, SOME (typs Ts))
| proof (PClass C) = ofclass C
| proof (Oracle (a, prop, SOME Ts)) = Oracle (a, prop, SOME (typs Ts))
| proof (PThm ({serial, command_pos, theory_name, thm_name, prop, types = SOME Ts}, thm_body)) =
PThm (thm_header serial command_pos theory_name thm_name prop (SOME (typs Ts)), thm_body)
| proof _ = raise Same.SAME;
in proof end;
fun map_proof_terms_same term typ = map_proof_same term typ (fn (T, c) => PClass (typ T, c));
fun map_proof_types_same typ = map_proof_terms_same (Term.map_types_same typ) typ;
fun map_proof_terms f g =
Same.commit (map_proof_terms_same (Same.function_eq (op =) f) (Same.function_eq (op =) g));
fun map_proof_types f =
Same.commit (map_proof_types_same (Same.function_eq (op =) f));
fun fold_proof_terms f (Abst (_, _, prf)) = fold_proof_terms f prf
| fold_proof_terms f (AbsP (_, SOME t, prf)) = f t #> fold_proof_terms f prf
| fold_proof_terms f (AbsP (_, NONE, prf)) = fold_proof_terms f prf
| fold_proof_terms f (prf % SOME t) = fold_proof_terms f prf #> f t
| fold_proof_terms f (prf % NONE) = fold_proof_terms f prf
| fold_proof_terms f (prf1 %% prf2) = fold_proof_terms f prf1 #> fold_proof_terms f prf2
| fold_proof_terms _ _ = I;
fun fold_proof_terms_types f g (Abst (_, SOME T, prf)) = g T #> fold_proof_terms_types f g prf
| fold_proof_terms_types f g (Abst (_, NONE, prf)) = fold_proof_terms_types f g prf
| fold_proof_terms_types f g (AbsP (_, SOME t, prf)) = f t #> fold_proof_terms_types f g prf
| fold_proof_terms_types f g (AbsP (_, NONE, prf)) = fold_proof_terms_types f g prf
| fold_proof_terms_types f g (prf % SOME t) = fold_proof_terms_types f g prf #> f t
| fold_proof_terms_types f g (prf % NONE) = fold_proof_terms_types f g prf
| fold_proof_terms_types f g (prf1 %% prf2) =
fold_proof_terms_types f g prf1 #> fold_proof_terms_types f g prf2
| fold_proof_terms_types _ g (PAxm (_, _, SOME Ts)) = fold g Ts
| fold_proof_terms_types _ g (PClass (T, _)) = g T
| fold_proof_terms_types _ g (Oracle (_, _, SOME Ts)) = fold g Ts
| fold_proof_terms_types _ g (PThm ({types = SOME Ts, ...}, _)) = fold g Ts
| fold_proof_terms_types _ _ _ = I;
fun maxidx_proof prf = fold_proof_terms_types Term.maxidx_term Term.maxidx_typ prf;
fun change_types types (PAxm (name, prop, _)) = PAxm (name, prop, types)
| change_types (SOME [T]) (PClass (_, c)) = PClass (T, c)
| change_types types (Oracle (name, prop, _)) = Oracle (name, prop, types)
| change_types types (PThm ({serial, command_pos, theory_name, thm_name, prop, types = _}, thm_body)) =
PThm (thm_header serial command_pos theory_name thm_name prop types, thm_body)
| change_types _ prf = prf;
(*Abstraction of a proof term over its occurrences of v,
which must contain no loose bound variables.
The resulting proof term is ready to become the body of an Abst.*)
fun abstract_over v =
let
fun term lev u =
if v aconv u then Bound lev
else
(case u of
Abs (a, T, t) => Abs (a, T, term (lev + 1) t)
| t $ u =>
(term lev t $ Same.commit (term lev) u
handle Same.SAME => t $ term lev u)
| _ => raise Same.SAME);
fun proof lev (AbsP (a, t, p)) =
(AbsP (a, Same.map_option (term lev) t, Same.commit (proof lev) p)
handle Same.SAME => AbsP (a, t, proof lev p))
| proof lev (Abst (a, T, p)) = Abst (a, T, proof (lev + 1) p)
| proof lev (p %% q) = (proof lev p %% Same.commit (proof lev) q
handle Same.SAME => p %% proof lev q)
| proof lev (p % t) =
(proof lev p % Option.map (Same.commit (term lev)) t
handle Same.SAME => p % Same.map_option (term lev) t)
| proof _ _ = raise Same.SAME;
in Same.commit (proof 0) end;
(*increments a proof term's non-local bound variables
required when moving a proof term within abstractions
inc is increment for bound variables
lev is level at which a bound variable is considered 'loose'*)
fun incr_bv_same incP inct =
if incP = 0 andalso inct = 0 then fn _ => fn _ => Same.same
else
let
val term = Term.incr_bv_same inct;
fun proof Plev _ (PBound i) =
if i >= Plev then PBound (i + incP) else raise Same.SAME
| proof Plev tlev (AbsP (a, t, p)) =
(AbsP (a, Same.map_option (term tlev) t, Same.commit (proof (Plev + 1) tlev) p)
handle Same.SAME => AbsP (a, t, proof (Plev + 1) tlev p))
| proof Plev tlev (Abst (a, T, body)) =
Abst (a, T, proof Plev (tlev + 1) body)
| proof Plev tlev (p %% q) =
(proof Plev tlev p %% Same.commit (proof Plev tlev) q
handle Same.SAME => p %% proof Plev tlev q)
| proof Plev tlev (p % t) =
(proof Plev tlev p % Option.map (Same.commit (term tlev)) t
handle Same.SAME => p % Same.map_option (term tlev) t)
| proof _ _ _ = raise Same.SAME;
in proof end;
fun incr_bv incP inct Plev tlev = Same.commit (incr_bv_same incP inct Plev tlev);
fun incr_boundvars incP inct = incr_bv incP inct 0 0;
fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
| prf_loose_bvar1 (prf % SOME t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
| prf_loose_bvar1 (_ % NONE) _ = true
| prf_loose_bvar1 (AbsP (_, SOME t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
| prf_loose_bvar1 (AbsP (_, NONE, _)) _ = true
| prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
| prf_loose_bvar1 _ _ = false;
fun prf_loose_Pbvar1 (PBound i) k = i = k
| prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
| prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
| prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
| prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
| prf_loose_Pbvar1 _ _ = false;
fun prf_add_loose_bnos plev _ (PBound i) (is, js) =
if i < plev then (is, js) else (insert (op =) (i-plev) is, js)
| prf_add_loose_bnos plev tlev (prf1 %% prf2) p =
prf_add_loose_bnos plev tlev prf2
(prf_add_loose_bnos plev tlev prf1 p)
| prf_add_loose_bnos plev tlev (prf % opt) (is, js) =
prf_add_loose_bnos plev tlev prf
(case opt of
NONE => (is, insert (op =) ~1 js)
| SOME t => (is, add_loose_bnos (t, tlev, js)))
| prf_add_loose_bnos plev tlev (AbsP (_, opt, prf)) (is, js) =
prf_add_loose_bnos (plev+1) tlev prf
(case opt of
NONE => (is, insert (op =) ~1 js)
| SOME t => (is, add_loose_bnos (t, tlev, js)))
| prf_add_loose_bnos plev tlev (Abst (_, _, prf)) p =
prf_add_loose_bnos plev (tlev+1) prf p
| prf_add_loose_bnos _ _ _ _ = ([], []);
(* substitutions *)
local
fun conflicting_tvarsT envT =
Term.fold_atyps
(fn T => fn instT =>
(case T of
TVar (v as (_, S)) =>
if TVars.defined instT v orelse can (Type.lookup envT) v then instT
else TVars.add (v, Logic.dummy_tfree S) instT
| _ => instT));
fun conflicting_tvars env =
Term.fold_aterms
(fn t => fn inst =>
(case t of
Var (v as (_, T)) =>
if Vars.defined inst v orelse can (Envir.lookup env) v then inst
else Vars.add (v, Free ("dummy", T)) inst
| _ => inst));
fun del_conflicting_tvars envT ty =
Term_Subst.instantiateT (TVars.build (conflicting_tvarsT envT ty)) ty;
fun del_conflicting_vars env tm =
let
val instT =
TVars.build (tm |> Term.fold_types (conflicting_tvarsT (Envir.type_env env)));
val inst = Vars.build (tm |> conflicting_tvars env);
in Term_Subst.instantiate (instT, inst) tm end;
in
fun norm_proof envir =
let
val tyenv = Envir.type_env envir;
fun msg s = warning ("type conflict in norm_proof:\n" ^ s);
fun norm_term_same t = Envir.norm_term_same envir t handle TYPE (s, _, _) =>
(msg s; Envir.norm_term_same envir (del_conflicting_vars envir t));
fun norm_type_same T = Envir.norm_type_same tyenv T handle TYPE (s, _, _) =>
(msg s; Envir.norm_type_same tyenv (del_conflicting_tvars tyenv T));
fun norm_types_same Ts = Envir.norm_types_same tyenv Ts handle TYPE (s, _, _) =>
(msg s; Envir.norm_types_same tyenv (map (del_conflicting_tvars tyenv) Ts));
fun norm (Abst (a, T, p)) =
(Abst (a, Same.map_option norm_type_same T, Same.commit norm p)
handle Same.SAME => Abst (a, T, norm p))
| norm (AbsP (a, t, p)) =
(AbsP (a, Same.map_option norm_term_same t, Same.commit norm p)
handle Same.SAME => AbsP (a, t, norm p))
| norm (p % t) =
(norm p % Option.map (Same.commit norm_term_same) t
handle Same.SAME => p % Same.map_option norm_term_same t)
| norm (p %% q) =
(norm p %% Same.commit norm q
handle Same.SAME => p %% norm q)
| norm (PAxm (a, prop, Ts)) =
PAxm (a, prop, Same.map_option norm_types_same Ts)
| norm (PClass (T, c)) =
PClass (norm_type_same T, c)
| norm (Oracle (a, prop, Ts)) =
Oracle (a, prop, Same.map_option norm_types_same Ts)
| norm (PThm ({serial = i, command_pos = p, theory_name, thm_name, prop = t, types = Ts}, thm_body)) =
PThm (thm_header i p theory_name thm_name t
(Same.map_option norm_types_same Ts), thm_body)
| norm _ = raise Same.SAME;
in Same.commit norm end;
end;
(* remove some types in proof term (to save space) *)
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
| remove_types (t $ u) = remove_types t $ remove_types u
| remove_types (Const (s, _)) = Const (s, dummyT)
| remove_types t = t;
fun remove_types_env (Envir.Envir {maxidx, tenv, tyenv}) =
Envir.Envir {maxidx = maxidx, tenv = Vartab.map (K (apsnd remove_types)) tenv, tyenv = tyenv};
fun norm_proof_remove_types env prf = norm_proof (remove_types_env env) prf;
(* substitution of bound variables *)
fun subst_bounds args prf =
if null args then prf
else
let
val term = Term.subst_bounds_same args;
fun proof lev (AbsP (a, t, p)) =
(AbsP (a, Same.map_option (term lev) t, Same.commit (proof lev) p)
handle Same.SAME => AbsP (a, t, proof lev p))
| proof lev (Abst (a, T, p)) = Abst (a, T, proof (lev + 1) p)
| proof lev (p %% q) =
(proof lev p %% Same.commit (proof lev) q
handle Same.SAME => p %% proof lev q)
| proof lev (p % t) =
(proof lev p % Option.map (Same.commit (term lev)) t
handle Same.SAME => p % Same.map_option (term lev) t)
| proof _ _ = raise Same.SAME;
in Same.commit (proof 0) prf end;
fun subst_pbounds args prf =
let
val n = length args;
fun proof Plev tlev (PBound i) =
if i < Plev then raise Same.SAME (*var is locally bound*)
else if i - Plev < n then incr_boundvars Plev tlev (nth args (i - Plev))
else PBound (i - n) (*loose: change it*)
| proof Plev tlev (AbsP (a, t, p)) = AbsP (a, t, proof (Plev + 1) tlev p)
| proof Plev tlev (Abst (a, T, p)) = Abst (a, T, proof Plev (tlev + 1) p)
| proof Plev tlev (p %% q) =
(proof Plev tlev p %% Same.commit (proof Plev tlev) q
handle Same.SAME => p %% proof Plev tlev q)
| proof Plev tlev (p % t) = proof Plev tlev p % t
| proof _ _ _ = raise Same.SAME;
in if null args then prf else Same.commit (proof 0 0) prf end;
(* freezing and thawing of variables in proof terms *)
local
fun frzT names =
map_type_tvar (fn (ixn, S) => TFree (the (AList.lookup (op =) names ixn), S));
fun thawT names =
map_type_tfree (fn (a, S) =>
(case AList.lookup (op =) names a of
NONE => raise Same.SAME
| SOME ixn => TVar (ixn, S)));
fun freeze names names' (t $ u) =
freeze names names' t $ freeze names names' u
| freeze names names' (Abs (s, T, t)) =
Abs (s, frzT names' T, freeze names names' t)
| freeze _ names' (Const (s, T)) = Const (s, frzT names' T)
| freeze _ names' (Free (s, T)) = Free (s, frzT names' T)
| freeze names names' (Var (ixn, T)) =
Free (the (AList.lookup (op =) names ixn), frzT names' T)
| freeze _ _ t = t;
fun thaw names names' (t $ u) =
thaw names names' t $ thaw names names' u
| thaw names names' (Abs (s, T, t)) =
Abs (s, thawT names' T, thaw names names' t)
| thaw _ names' (Const (s, T)) = Const (s, thawT names' T)
| thaw names names' (Free (s, T)) =
let val T' = thawT names' T in
(case AList.lookup (op =) names s of
NONE => Free (s, T')
| SOME ixn => Var (ixn, T'))
end
| thaw _ names' (Var (ixn, T)) = Var (ixn, thawT names' T)
| thaw _ _ t = t;
in
fun freeze_thaw_prf prf =
let
val (fs, Tfs, vs, Tvs) = fold_proof_terms_types
(fn t => fn (fs, Tfs, vs, Tvs) =>
(Term.add_free_names t fs, Term.add_tfree_names t Tfs,
Term.add_var_names t vs, Term.add_tvar_names t Tvs))
(fn T => fn (fs, Tfs, vs, Tvs) =>
(fs, Term.add_tfree_namesT T Tfs,
vs, Term.add_tvar_namesT T Tvs))
prf ([], [], [], []);
val names = vs ~~ Name.variant_list fs (map fst vs);
val names' = Tvs ~~ Name.variant_list Tfs (map fst Tvs);
val rnames = map swap names;
val rnames' = map swap names';
in
(map_proof_terms (freeze names names') (frzT names') prf,
map_proof_terms (thaw rnames rnames') (thawT rnames'))
end;
end;
(** inference rules **)
(* trivial implication *)
val trivial_proof = AbsP ("H", NONE, PBound 0);
(* implication introduction *)
fun gen_implies_intr_proof f h prf =
let
fun abshyp i (Hyp t) = if h aconv t then PBound i else raise Same.SAME
| abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
| abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i + 1) prf)
| abshyp i (prf % t) = abshyp i prf % t
| abshyp i (prf1 %% prf2) =
(abshyp i prf1 %% abshyph i prf2
handle Same.SAME => prf1 %% abshyp i prf2)
| abshyp _ _ = raise Same.SAME
and abshyph i prf = (abshyp i prf handle Same.SAME => prf);
in
AbsP ("H", f h, abshyph 0 prf)
end;
val implies_intr_proof = gen_implies_intr_proof (K NONE);
val implies_intr_proof' = gen_implies_intr_proof SOME;
(* forall introduction *)
fun forall_intr_proof (a, v) opt_T prf = Abst (a, opt_T, abstract_over v prf);
fun forall_intr_proof' v prf =
let val (a, T) = (case v of Var ((a, _), T) => (a, T) | Free (a, T) => (a, T))
in forall_intr_proof (a, v) (SOME T) prf end;
(* varify *)
fun varifyT_proof names prf =
if null names then prf
else
let
val tab = TFrees.make names;
val typ =
Term.map_atyps_same
(fn TFree v =>
(case TFrees.lookup tab v of
NONE => raise Same.SAME
| SOME w => TVar w)
| _ => raise Same.SAME);
in Same.commit (map_proof_types_same typ) prf end;
(* freeze *)
fun legacy_freezeT t prf =
(case Type.legacy_freezeT t of
NONE => prf
| SOME f =>
let val frzT = map_type_tvar (Same.function f)
in map_proof_terms (map_types frzT) frzT prf end);
(* rotate assumptions *)
fun rotate_proof Bs Bi' params asms m prf =
let
val i = length asms;
val j = length Bs;
in
mk_AbsP (Bs @ [Bi']) (proof_combP (prf, map PBound
(j downto 1) @ [mk_Abst params (mk_AbsP asms
(proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
end;
(* permute premises *)
fun permute_prems_proof prems' j k prf =
let val n = length prems' in
mk_AbsP prems'
(proof_combP (prf, map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
end;
(* generalization *)
fun generalize_proof (tfrees, frees) idx prop prf =
let
val gen =
if Names.is_empty frees then []
else
fold_aterms (fn Free (x, T) => Names.defined frees x ? insert (op =) (x, T) | _ => I)
(Term_Subst.generalize (tfrees, Names.empty) idx prop) [];
in
prf
|> Same.commit (map_proof_terms_same
(Term_Subst.generalize_same (tfrees, Names.empty) idx)
(Term_Subst.generalizeT_same tfrees idx))
|> fold (fn (x, T) => forall_intr_proof (x, Free (x, T)) NONE) gen
|> fold_rev (fn (x, T) => fn prf' => prf' %> Var (Name.clean_index (x, idx), T)) gen
end;
(* instantiation *)
fun instantiate (instT, inst) =
Same.commit (map_proof_terms_same
(Term_Subst.instantiate_same (instT, Vars.map (K remove_types) inst))
(Term_Subst.instantiateT_same instT));
(* lifting *)
fun lift_proof gprop inc prems prf =
let
val typ = Logic.incr_tvar_same inc;
val typs = Same.map_option (Same.map typ);
fun term Ts lev =
Logic.incr_indexes_operation {fixed = [], Ts = Ts, inc = inc, level = lev};
fun proof Ts lev (Abst (a, T, p)) =
(Abst (a, Same.map_option typ T, Same.commit (proof Ts (lev + 1)) p)
handle Same.SAME => Abst (a, T, proof Ts (lev + 1) p))
| proof Ts lev (AbsP (a, t, p)) =
(AbsP (a, Same.map_option (term Ts lev) t, Same.commit (proof Ts lev) p)
handle Same.SAME => AbsP (a, t, proof Ts lev p))
| proof Ts lev (p % t) =
(proof Ts lev p % Option.map (Same.commit (term Ts lev)) t
handle Same.SAME => p % Same.map_option (term Ts lev) t)
| proof Ts lev (p %% q) =
(proof Ts lev p %% Same.commit (proof Ts lev) q
handle Same.SAME => p %% proof Ts lev q)
| proof _ _ (PAxm (a, prop, Ts)) = PAxm (a, prop, typs Ts)
| proof _ _ (PClass (T, c)) = PClass (typ T, c)
| proof _ _ (Oracle (a, prop, Ts)) = Oracle (a, prop, typs Ts)
| proof _ _ (PThm ({serial, command_pos, theory_name, thm_name, prop, types}, thm_body)) =
PThm (thm_header serial command_pos theory_name thm_name prop (typs types), thm_body)
| proof _ _ _ = raise Same.SAME;
val k = length prems;
fun mk_app b (i, j, p) =
if b then (i - 1, j, p %% PBound i) else (i, j - 1, p %> Bound j);
fun lift Ts bs i j (Const ("Pure.imp", _) $ A $ B) =
AbsP ("H", NONE (*A*), lift Ts (true::bs) (i + 1) j B)
| lift Ts bs i j (Const ("Pure.all", _) $ Abs (a, T, t)) =
Abst (a, NONE (*T*), lift (T::Ts) (false::bs) i (j + 1) t)
| lift Ts bs i j _ =
proof_combP (Same.commit (proof (rev Ts) 0) prf,
map (fn k => (#3 (fold_rev mk_app bs (i - 1, j - 1, PBound k)))) (i + k - 1 downto i));
in mk_AbsP prems (lift [] [] 0 0 gprop) end;
fun incr_indexes i =
Same.commit
(map_proof_terms_same
(Logic.incr_indexes_operation {fixed = [], Ts = [], inc = i, level = 0})
(Logic.incr_tvar_same i));
(* proof by assumption *)
fun mk_asm_prf C i m =
let
fun imp_prf _ i 0 = PBound i
| imp_prf (Const ("Pure.imp", _) $ A $ B) i m = AbsP ("H", NONE (*A*), imp_prf B (i+1) (m-1))
| imp_prf _ i _ = PBound i;
fun all_prf (Const ("Pure.all", _) $ Abs (a, T, t)) = Abst (a, NONE (*T*), all_prf t)
| all_prf t = imp_prf t (~i) m
in all_prf C end;
fun assumption_proof Bs Bi n prf =
mk_AbsP Bs (proof_combP (prf, map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi n ~1]));
(* composition of object rule with proof state *)
fun flatten_params_proof i j n (Const ("Pure.imp", _) $ A $ B, k) =
AbsP ("H", NONE (*A*), flatten_params_proof (i+1) j n (B, k))
| flatten_params_proof i j n (Const ("Pure.all", _) $ Abs (a, T, t), k) =
Abst (a, NONE (*T*), flatten_params_proof i (j+1) n (t, k))
| flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
map Bound (j-1 downto 0)), map PBound (remove (op =) (i-n) (i-1 downto 0)));
fun bicompose_proof env smax flatten Bs As A oldAs n m rprf sprf =
let
val normt = Envir.norm_term env;
val normp = norm_proof_remove_types env;
val lb = length Bs;
val la = length As;
fun proof p =
mk_AbsP (map normt (Bs @ As)) (proof_combP (sprf,
map PBound (lb + la - 1 downto la)) %%
proof_combP (p, (if n>0 then [mk_asm_prf (the A) n m] else []) @
map (if flatten then flatten_params_proof 0 0 n else PBound o snd)
(oldAs ~~ (la - 1 downto 0))));
in
if Envir.is_empty env then proof rprf
else if Envir.above env smax
then proof (normp rprf)
else normp (proof rprf)
end;
(** sort constraints within the logic **)
type sorts_proof = (class * class -> proof) * (string * class list list * class -> proof);
fun of_sort_proof algebra (classrel_proof, arity_proof) hyps =
Sorts.of_sort_derivation algebra
{class_relation = fn _ => fn _ => fn (prf, c1) => fn c2 =>
if c1 = c2 then prf else classrel_proof (c1, c2) %% prf,
type_constructor = fn (a, _) => fn dom => fn c =>
let val Ss = map (map snd) dom and prfs = maps (map fst) dom
in proof_combP (arity_proof (a, Ss, c), prfs) end,
type_variable = fn typ => map (fn c => (hyps (typ, c), c)) (Type.sort_of_atyp typ)};
fun unconstrainT_proof algebra sorts_proof (ucontext: Logic.unconstrain_context) =
let
val typ = #typ_operation ucontext {strip_sorts = true};
val typ_sort = #typ_operation ucontext {strip_sorts = false};
fun hyps T =
(case AList.lookup (op =) (#constraints ucontext) T of
SOME t => Hyp t
| NONE => raise Fail "unconstrainT_proof: missing constraint");
fun class (T, c) =
let val T' = Same.commit typ_sort T
in the_single (of_sort_proof algebra sorts_proof hyps (T', [c])) end;
in
Same.commit (map_proof_same (Term.map_types_same typ) typ class)
#> fold_rev (implies_intr_proof o #2) (#constraints ucontext)
end;
(** axioms and theorems **)
val add_type_variables = (fold_types o fold_atyps) (insert (op =));
fun type_variables_of t = rev (add_type_variables t []);
val add_variables = fold_aterms (fn a => (is_Var a orelse is_Free a) ? insert (op =) a);
fun variables_of t = rev (add_variables t []);
fun test_args _ [] = true
| test_args is (Bound i :: ts) =
not (member (op =) is i) andalso test_args (i :: is) ts
| test_args _ _ = false;
fun is_fun (Type ("fun", _)) = true
| is_fun (TVar _) = true
| is_fun _ = false;
fun vars_of t = map Var (build_rev (Term.add_vars t));
fun add_funvars Ts (vs, t) =
if is_fun (fastype_of1 (Ts, t)) then
union (op =) vs (map_filter (fn Var (ixn, T) =>
if is_fun T then SOME ixn else NONE | _ => NONE) (vars_of t))
else vs;
fun add_npvars q p Ts (vs, Const ("Pure.imp", _) $ t $ u) =
add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
| add_npvars q p Ts (vs, Const ("Pure.all", Type (_, [Type (_, [T, _]), _])) $ t) =
add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
| add_npvars q p Ts (vs, Abs (_, T, t)) = add_npvars q p (T::Ts) (vs, t)
| add_npvars _ _ Ts (vs, t) = add_npvars' Ts (vs, t)
and add_npvars' Ts (vs, t) =
(case strip_comb t of
(Var (ixn, _), ts) => if test_args [] ts then vs
else Library.foldl (add_npvars' Ts)
(AList.update (op =) (ixn,
Library.foldl (add_funvars Ts) ((these ooo AList.lookup) (op =) vs ixn, ts)) vs, ts)
| (Abs (_, T, u), ts) => Library.foldl (add_npvars' (T::Ts)) (vs, u :: ts)
| (_, ts) => Library.foldl (add_npvars' Ts) (vs, ts));
fun prop_vars (Const ("Pure.imp", _) $ P $ Q) = union (op =) (prop_vars P) (prop_vars Q)
| prop_vars (Const ("Pure.all", _) $ Abs (_, _, t)) = prop_vars t
| prop_vars t = (case strip_comb t of (Var (ixn, _), _) => [ixn] | _ => []);
fun is_proj t =
let
fun is_p i t =
(case strip_comb t of
(Bound _, []) => false
| (Bound j, ts) => j >= i orelse exists (is_p i) ts
| (Abs (_, _, u), _) => is_p (i+1) u
| (_, ts) => exists (is_p i) ts)
in
(case strip_abs_body t of
Bound _ => true
| t' => is_p 0 t')
end;
fun prop_args prop =
let
val needed_vars =
union (op =) (Library.foldl (uncurry (union (op =)))
([], map (uncurry (insert (op =))) (add_npvars true true [] ([], prop))))
(prop_vars prop);
in
variables_of prop |> map
(fn var as Var (ixn, _) => if member (op =) needed_vars ixn then SOME var else NONE
| free => SOME free)
end;
fun const_proof mk name prop =
let
val args = prop_args prop;
val ({outer_constraints, ...}, prop1) = Logic.unconstrainT [] prop;
val head = mk (name, prop1, NONE);
in proof_combP (proof_combt' (head, args), map PClass outer_constraints) end;
val axiom_proof = const_proof PAxm;
val oracle_proof = const_proof Oracle;
val shrink_proof =
let
fun shrink ls lev (prf as Abst (a, T, body)) =
let val (b, is, ch, body') = shrink ls (lev+1) body
in (b, is, ch, if ch then Abst (a, T, body') else prf) end
| shrink ls lev (prf as AbsP (a, t, body)) =
let val (b, is, ch, body') = shrink (lev::ls) lev body
in (b orelse member (op =) is 0, map_filter (fn 0 => NONE | i => SOME (i-1)) is,
ch, if ch then AbsP (a, t, body') else prf)
end
| shrink ls lev prf =
let val (is, ch, _, prf') = shrink' ls lev [] [] prf
in (false, is, ch, prf') end
and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
let
val p as (_, is', ch', prf') = shrink ls lev prf2;
val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
in (union (op =) is is', ch orelse ch', ts',
if ch orelse ch' then prf'' %% prf' else prf)
end
| shrink' ls lev ts prfs (prf as prf1 % t) =
let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
in (is, ch orelse ch', ts',
if ch orelse ch' then prf' % t' else prf) end
| shrink' ls lev ts prfs (prf as PBound i) =
(if exists (fn SOME (Bound j) => lev-j <= nth ls i | _ => true) ts
orelse has_duplicates (op =)
(Library.foldl (fn (js, SOME (Bound j)) => j :: js | (js, _) => js) ([], ts))
orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
| shrink' _ _ ts _ (Hyp t) = ([], false, map (pair false) ts, Hyp t)
| shrink' _ _ ts _ (prf as MinProof) = ([], false, map (pair false) ts, prf)
| shrink' _ _ ts _ (prf as PClass _) = ([], false, map (pair false) ts, prf)
| shrink' _ _ ts prfs prf =
let
val prop =
(case prf of
PAxm (_, prop, _) => prop
| Oracle (_, prop, _) => prop
| PThm ({prop, ...}, _) => prop
| _ => raise Fail "shrink: proof not in normal form");
val vs = vars_of prop;
val (ts', ts'') = chop (length vs) ts;
val insts = take (length ts') (map (fst o dest_Var) vs) ~~ ts';
val nvs = Library.foldl (fn (ixns', (ixn, ixns)) =>
insert (op =) ixn
(case AList.lookup (op =) insts ixn of
SOME (SOME t) => if is_proj t then union (op =) ixns ixns' else ixns'
| _ => union (op =) ixns ixns'))
(needed prop ts'' prfs, add_npvars false true [] ([], prop));
val insts' = map
(fn (ixn, x as SOME _) => if member (op =) nvs ixn then (false, x) else (true, NONE)
| (_, x) => (false, x)) insts
in ([], false, insts' @ map (pair false) ts'', prf) end
and needed (Const ("Pure.imp", _) $ t $ u) ts ((b, _, _, _)::prfs) =
union (op =) (if b then map (fst o dest_Var) (vars_of t) else []) (needed u ts prfs)
| needed (Var (ixn, _)) (_::_) _ = [ixn]
| needed _ _ _ = [];
in fn prf => #4 (shrink [] 0 prf) end;
(** axioms for equality **)
local val thy = Sign.local_path (Context.the_global_context ()) in
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
equal_elim_axm, abstract_rule_axm, combination_axm] =
map (fn (b, t) => PAxm (Sign.full_name thy b, Logic.varify_global t, NONE))
Theory.equality_axioms;
end;
val reflexive_proof = reflexive_axm % NONE;
val is_reflexive_proof = fn PAxm ("Pure.reflexive", _, _) % _ => true | _ => false;
fun symmetric_proof prf =
if is_reflexive_proof prf then prf
else symmetric_axm % NONE % NONE %% prf;
fun transitive_proof U u prf1 prf2 =
if is_reflexive_proof prf1 then prf2
else if is_reflexive_proof prf2 then prf1
else if U = propT then transitive_axm % NONE % SOME (remove_types u) % NONE %% prf1 %% prf2
else transitive_axm % NONE % NONE % NONE %% prf1 %% prf2;
fun equal_intr_proof A B prf1 prf2 =
equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
fun equal_elim_proof A B prf1 prf2 =
equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
fun abstract_rule_proof (a, x) prf =
abstract_rule_axm % NONE % NONE %% forall_intr_proof (a, x) NONE prf;
fun check_comb (PAxm ("Pure.combination", _, _) % f % _ % _ % _ %% prf %% _) =
is_some f orelse check_comb prf
| check_comb (PAxm ("Pure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
check_comb prf1 andalso check_comb prf2
| check_comb (PAxm ("Pure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
| check_comb _ = false;
fun combination_proof f g t u prf1 prf2 =
let
val f' = Envir.beta_norm f;
val g' = Envir.beta_norm g;
val ax =
if check_comb prf1 then combination_axm % NONE % NONE
else if is_reflexive_proof prf1 then combination_axm %> remove_types f' % NONE
else combination_axm %> remove_types f' %> remove_types g'
val t' =
(case Term.head_of f' of
Abs _ => SOME (remove_types t)
| Var _ => SOME (remove_types t)
| _ => NONE);
val u' =
(case Term.head_of g' of
Abs _ => SOME (remove_types u)
| Var _ => SOME (remove_types u)
| _ => NONE);
in ax % t' % u' %% prf1 %% prf2 end;
(** rewriting on proof terms **)
(* simple first order matching functions for terms and proofs (see pattern.ML) *)
exception PMatch;
fun flt (i: int) = filter (fn n => n < i);
fun fomatch Ts tymatch j instsp p =
let
fun mtch (instsp as (tyinsts, insts)) = fn
(Var (ixn, T), t) =>
if j>0 andalso not (null (flt j (loose_bnos t)))
then raise PMatch
else (tymatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))),
(ixn, t) :: insts)
| (Free (a, T), Free (b, U)) =>
if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
| (Const (a, T), Const (b, U)) =>
if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
| (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
| (Bound i, Bound j) => if i=j then instsp else raise PMatch
| _ => raise PMatch
in mtch instsp (apply2 Envir.beta_eta_contract p) end;
fun match_proof Ts tymatch =
let
fun optmatch _ inst (NONE, _) = inst
| optmatch _ _ (SOME _, NONE) = raise PMatch
| optmatch mtch inst (SOME x, SOME y) = mtch inst (x, y)
fun matcht Ts j (pinst, tinst) (t, u) =
(pinst, fomatch Ts tymatch j tinst (t, Envir.beta_norm u));
fun matchT (pinst, (tyinsts, insts)) p =
(pinst, (tymatch (tyinsts, K p), insts));
fun matchTs inst (Ts, Us) = Library.foldl (uncurry matchT) (inst, Ts ~~ Us);
fun mtch Ts i j (pinst, tinst) (Hyp (Var (ixn, _)), prf) =
if i = 0 andalso j = 0 then ((ixn, prf) :: pinst, tinst)
else
(case apfst (flt i) (apsnd (flt j) (prf_add_loose_bnos 0 0 prf ([], []))) of
([], []) => ((ixn, incr_boundvars (~i) (~j) prf) :: pinst, tinst)
| ([], _) =>
if j = 0 then ((ixn, incr_boundvars (~i) (~j) prf) :: pinst, tinst)
else raise PMatch
| _ => raise PMatch)
| mtch Ts i j inst (prf1 % opt1, prf2 % opt2) =
optmatch (matcht Ts j) (mtch Ts i j inst (prf1, prf2)) (opt1, opt2)
| mtch Ts i j inst (prf1 %% prf2, prf1' %% prf2') =
mtch Ts i j (mtch Ts i j inst (prf1, prf1')) (prf2, prf2')
| mtch Ts i j inst (Abst (_, opT, prf1), Abst (_, opU, prf2)) =
mtch (the_default dummyT opU :: Ts) i (j+1)
(optmatch matchT inst (opT, opU)) (prf1, prf2)
| mtch Ts i j inst (prf1, Abst (_, opU, prf2)) =
mtch (the_default dummyT opU :: Ts) i (j+1) inst
(incr_boundvars 0 1 prf1 %> Bound 0, prf2)
| mtch Ts i j inst (AbsP (_, opt, prf1), AbsP (_, opu, prf2)) =
mtch Ts (i+1) j (optmatch (matcht Ts j) inst (opt, opu)) (prf1, prf2)
| mtch Ts i j inst (prf1, AbsP (_, _, prf2)) =
mtch Ts (i+1) j inst (incr_boundvars 1 0 prf1 %% PBound 0, prf2)
| mtch Ts i j inst (PAxm (s1, _, opTs), PAxm (s2, _, opUs)) =
if s1 = s2 then optmatch matchTs inst (opTs, opUs)
else raise PMatch
| mtch Ts i j inst (PClass (T1, c1), PClass (T2, c2)) =
if c1 = c2 then matchT inst (T1, T2)
else raise PMatch
| mtch Ts i j inst
(PThm ({thm_name = name1, prop = prop1, types = types1, ...}, _),
PThm ({thm_name = name2, prop = prop2, types = types2, ...}, _)) =
if name1 = name2 andalso prop1 = prop2
then optmatch matchTs inst (types1, types2)
else raise PMatch
| mtch _ _ _ inst (PBound i, PBound j) = if i = j then inst else raise PMatch
| mtch _ _ _ _ _ = raise PMatch
in mtch Ts 0 0 end;
fun prf_subst (pinst, (tyinsts, insts)) =
let
val substT = Envir.subst_type_same tyinsts;
val substTs = Same.map substT;
fun subst' lev (Var (xi, _)) =
(case AList.lookup (op =) insts xi of
NONE => raise Same.SAME
| SOME u => Term.incr_boundvars lev u)
| subst' _ (Const (s, T)) = Const (s, substT T)
| subst' _ (Free (s, T)) = Free (s, substT T)
| subst' lev (Abs (a, T, body)) =
(Abs (a, substT T, Same.commit (subst' (lev + 1)) body)
handle Same.SAME => Abs (a, T, subst' (lev + 1) body))
| subst' lev (f $ t) =
(subst' lev f $ Same.commit (subst' lev) t
handle Same.SAME => f $ subst' lev t)
| subst' _ _ = raise Same.SAME;
fun subst plev tlev (AbsP (a, t, body)) =
(AbsP (a, Same.map_option (subst' tlev) t, Same.commit (subst (plev + 1) tlev) body)
handle Same.SAME => AbsP (a, t, subst (plev + 1) tlev body))
| subst plev tlev (Abst (a, T, body)) =
(Abst (a, Same.map_option substT T, Same.commit (subst plev (tlev + 1)) body)
handle Same.SAME => Abst (a, T, subst plev (tlev + 1) body))
| subst plev tlev (prf %% prf') =
(subst plev tlev prf %% Same.commit (subst plev tlev) prf'
handle Same.SAME => prf %% subst plev tlev prf')
| subst plev tlev (prf % t) =
(subst plev tlev prf % Same.commit (Same.map_option (subst' tlev)) t
handle Same.SAME => prf % Same.map_option (subst' tlev) t)
| subst plev tlev (Hyp (Var (xi, _))) =
(case AList.lookup (op =) pinst xi of
NONE => raise Same.SAME
| SOME prf' => incr_boundvars plev tlev prf')
| subst _ _ (PAxm (id, prop, Ts)) = PAxm (id, prop, Same.map_option substTs Ts)
| subst _ _ (PClass (T, c)) = PClass (substT T, c)
| subst _ _ (Oracle (id, prop, Ts)) = Oracle (id, prop, Same.map_option substTs Ts)
| subst _ _ (PThm ({serial = i, command_pos = p, theory_name, thm_name, prop, types}, thm_body)) =
PThm (thm_header i p theory_name thm_name prop (Same.map_option substTs types), thm_body)
| subst _ _ _ = raise Same.SAME;
in fn t => subst 0 0 t handle Same.SAME => t end;
(*A fast unification filter: true unless the two terms cannot be unified.
Terms must be NORMAL. Treats all Vars as distinct. *)
fun could_unify (prf1, prf2) =
let
fun matchrands (prf1 %% prf2) (prf1' %% prf2') =
could_unify (prf2, prf2') andalso matchrands prf1 prf1'
| matchrands (prf % SOME t) (prf' % SOME t') =
Term.could_unify (t, t') andalso matchrands prf prf'
| matchrands (prf % _) (prf' % _) = matchrands prf prf'
| matchrands _ _ = true
in case (any_head_of prf1, any_head_of prf2) of
(_, Hyp (Var _)) => true
| (Hyp (Var _), _) => true
| (PAxm (a, _, _), PAxm (b, _, _)) => a = b andalso matchrands prf1 prf2
| (PClass (_, c), PClass (_, d)) => c = d andalso matchrands prf1 prf2
| (PThm ({thm_name = a, prop = propa, ...}, _), PThm ({thm_name = b, prop = propb, ...}, _)) =>
a = b andalso propa = propb andalso matchrands prf1 prf2
| (PBound i, PBound j) => i = j andalso matchrands prf1 prf2
| (AbsP _, _) => true (*because of possible eta equality*)
| (Abst _, _) => true
| (_, AbsP _) => true
| (_, Abst _) => true
| _ => false
end;
(* rewrite proof *)
val no_skel = PBound 0;
val normal_skel = Hyp (Var ((Name.uu, 0), propT));
fun rewrite_prf tymatch (rules, procs) prf =
let
fun rew _ _ (Abst (_, _, body) % SOME t) = SOME (subst_bounds [t] body, no_skel)
| rew _ _ (AbsP (_, _, body) %% prf) = SOME (subst_pbounds [prf] body, no_skel)
| rew Ts hs prf =
(case get_first (fn r => r Ts hs prf) procs of
NONE => get_first (fn (prf1, prf2) => SOME (prf_subst
(match_proof Ts tymatch ([], (Vartab.empty, [])) (prf1, prf)) prf2, prf2)
handle PMatch => NONE) (filter (fn (prf', _) => could_unify (prf, prf')) rules)
| some => some);
fun rew0 Ts hs (prf as AbsP (_, _, prf' %% PBound 0)) =
if prf_loose_Pbvar1 prf' 0 then rew Ts hs prf
else
let val prf'' = incr_boundvars (~1) 0 prf'
in SOME (the_default (prf'', no_skel) (rew Ts hs prf'')) end
| rew0 Ts hs (prf as Abst (_, _, prf' % SOME (Bound 0))) =
if prf_loose_bvar1 prf' 0 then rew Ts hs prf
else
let val prf'' = incr_boundvars 0 (~1) prf'
in SOME (the_default (prf'', no_skel) (rew Ts hs prf'')) end
| rew0 Ts hs prf = rew Ts hs prf;
fun rew1 _ _ (Hyp (Var _)) _ = NONE
| rew1 Ts hs skel prf =
(case rew2 Ts hs skel prf of
SOME prf1 =>
(case rew0 Ts hs prf1 of
SOME (prf2, skel') => SOME (the_default prf2 (rew1 Ts hs skel' prf2))
| NONE => SOME prf1)
| NONE =>
(case rew0 Ts hs prf of
SOME (prf1, skel') => SOME (the_default prf1 (rew1 Ts hs skel' prf1))
| NONE => NONE))
and rew2 Ts hs skel (prf % SOME t) =
(case prf of
Abst (_, _, body) =>
let val prf' = subst_bounds [t] body
in SOME (the_default prf' (rew2 Ts hs no_skel prf')) end
| _ =>
(case rew1 Ts hs (case skel of skel' % _ => skel' | _ => no_skel) prf of
SOME prf' => SOME (prf' % SOME t)
| NONE => NONE))
| rew2 Ts hs skel (prf % NONE) = Option.map (fn prf' => prf' % NONE)
(rew1 Ts hs (case skel of skel' % _ => skel' | _ => no_skel) prf)
| rew2 Ts hs skel (prf1 %% prf2) =
(case prf1 of
AbsP (_, _, body) =>
let val prf' = subst_pbounds [prf2] body
in SOME (the_default prf' (rew2 Ts hs no_skel prf')) end
| _ =>
let
val (skel1, skel2) =
(case skel of
skel1 %% skel2 => (skel1, skel2)
| _ => (no_skel, no_skel))
in
(case rew1 Ts hs skel1 prf1 of
SOME prf1' =>
(case rew1 Ts hs skel2 prf2 of
SOME prf2' => SOME (prf1' %% prf2')
| NONE => SOME (prf1' %% prf2))
| NONE =>
(case rew1 Ts hs skel2 prf2 of
SOME prf2' => SOME (prf1 %% prf2')
| NONE => NONE))
end)
| rew2 Ts hs skel (Abst (s, T, prf)) =
(case rew1 (the_default dummyT T :: Ts) hs
(case skel of Abst (_, _, skel') => skel' | _ => no_skel) prf of
SOME prf' => SOME (Abst (s, T, prf'))
| NONE => NONE)
| rew2 Ts hs skel (AbsP (s, t, prf)) =
(case rew1 Ts (t :: hs) (case skel of AbsP (_, _, skel') => skel' | _ => no_skel) prf of
SOME prf' => SOME (AbsP (s, t, prf'))
| NONE => NONE)
| rew2 _ _ _ _ = NONE;
in the_default prf (rew1 [] [] no_skel prf) end;
fun rewrite_proof thy = rewrite_prf (fn (tyenv, f) =>
Sign.typ_match thy (f ()) tyenv handle Type.TYPE_MATCH => raise PMatch);
fun rewrite_proof_notypes rews = rewrite_prf fst rews;
(* theory data *)
structure Data = Theory_Data
(
type T =
((stamp * (proof * proof)) list *
(stamp * (typ list -> term option list -> proof -> (proof * proof) option)) list) *
(theory -> proof -> proof) option;
val empty = (([], []), NONE);
fun merge (((rules1, procs1), preproc1), ((rules2, procs2), preproc2)) : T =
((AList.merge (op =) (K true) (rules1, rules2),
AList.merge (op =) (K true) (procs1, procs2)),
merge_options (preproc1, preproc2));
);
fun get_rew_data thy =
let val (rules, procs) = #1 (Data.get thy)
in (map #2 rules, map #2 procs) end;
fun rew_proof thy = rewrite_prf fst (get_rew_data thy);
fun add_prf_rrule r = (Data.map o apfst o apfst) (cons (stamp (), r));
fun add_prf_rproc p = (Data.map o apfst o apsnd) (cons (stamp (), p));
fun set_preproc f = (Data.map o apsnd) (K (SOME f));
fun apply_preproc thy = (case #2 (Data.get thy) of NONE => I | SOME f => f thy);
(** reconstruction of partial proof terms **)
fun forall_intr_variables_term prop = fold_rev Logic.all (variables_of prop) prop;
fun forall_intr_variables prop prf = fold_rev forall_intr_proof' (variables_of prop) prf;
local
fun app_types shift prop Ts prf =
let
val inst = type_variables_of prop ~~ Ts;
fun subst_same A =
(case AList.lookup (op =) inst A of SOME T => T | NONE => raise Same.SAME);
val subst_type_same =
Term.map_atyps_same
(fn TVar ((a, i), S) => subst_same (TVar ((a, i - shift), S)) | A => subst_same A);
in Same.commit (map_proof_types_same subst_type_same) prf end;
fun guess_name (PThm ({thm_name, ...}, _)) = thm_name
| guess_name (prf %% Hyp _) = guess_name prf
| guess_name (prf %% PClass _) = guess_name prf
| guess_name (prf % NONE) = guess_name prf
| guess_name (prf % SOME (Var _)) = guess_name prf
| guess_name _ = Thm_Name.none;
(* generate constraints for proof term *)
fun mk_var env Ts T =
let val (env', v) = Envir.genvar "a" (env, rev Ts ---> T)
in (list_comb (v, map Bound (length Ts - 1 downto 0)), env') end;
fun mk_tvar S (Envir.Envir {maxidx, tenv, tyenv}) =
(TVar (("'t", maxidx + 1), S),
Envir.Envir {maxidx = maxidx + 1, tenv = tenv, tyenv = tyenv});
val mk_abs = fold (fn T => fn u => Abs ("", T, u));
fun unifyT thy env T U =
let
val Envir.Envir {maxidx, tenv, tyenv} = env;
val (tyenv', maxidx') = Sign.typ_unify thy (T, U) (tyenv, maxidx);
in Envir.Envir {maxidx = maxidx', tenv = tenv, tyenv = tyenv'} end;
fun chaseT env (T as TVar v) =
(case Type.lookup (Envir.type_env env) v of
NONE => T
| SOME T' => chaseT env T')
| chaseT _ T = T;
fun infer_type thy (env as Envir.Envir {maxidx, tenv, tyenv}) _ vTs (t as Const (s, T)) =
if T = dummyT then
(case Sign.const_type thy s of
NONE => error ("reconstruct_proof: No such constant: " ^ quote s)
| SOME T =>
let val T' = Term.strip_sortsT (Logic.incr_tvar (maxidx + 1) T) in
(Const (s, T'), T', vTs,
Envir.Envir {maxidx = maxidx + 1, tenv = tenv, tyenv = tyenv})
end)
else (t, T, vTs, env)
| infer_type _ env _ vTs (t as Free (s, T)) =
if T = dummyT then
(case Symtab.lookup vTs s of
NONE =>
let val (T, env') = mk_tvar [] env
in (Free (s, T), T, Symtab.update_new (s, T) vTs, env') end
| SOME T => (Free (s, T), T, vTs, env))
else (t, T, vTs, env)
| infer_type _ _ _ _ (Var _) = error "reconstruct_proof: internal error"
| infer_type thy env Ts vTs (Abs (s, T, t)) =
let
val (T', env') = if T = dummyT then mk_tvar [] env else (T, env);
val (t', U, vTs', env'') = infer_type thy env' (T' :: Ts) vTs t
in (Abs (s, T', t'), T' --> U, vTs', env'') end
| infer_type thy env Ts vTs (t $ u) =
let
val (t', T, vTs1, env1) = infer_type thy env Ts vTs t;
val (u', U, vTs2, env2) = infer_type thy env1 Ts vTs1 u;
in
(case chaseT env2 T of
Type ("fun", [U', V]) => (t' $ u', V, vTs2, unifyT thy env2 U U')
| _ =>
let val (V, env3) = mk_tvar [] env2
in (t' $ u', V, vTs2, unifyT thy env3 T (U --> V)) end)
end
| infer_type _ env Ts vTs (t as Bound i) = ((t, nth Ts i, vTs, env)
handle General.Subscript => error ("infer_type: bad variable index " ^ string_of_int i));
fun cantunify thy (t, u) =
error ("Non-unifiable terms:\n" ^
Syntax.string_of_term_global thy t ^ "\n\n" ^ Syntax.string_of_term_global thy u);
fun decompose thy Ts (p as (t, u)) env =
let
fun rigrig (a, T) (b, U) uT ts us =
if a <> b then cantunify thy p
else apfst flat (fold_map (decompose thy Ts) (ts ~~ us) (uT env T U))
in
case apply2 (strip_comb o Envir.head_norm env) p of
((Const c, ts), (Const d, us)) => rigrig c d (unifyT thy) ts us
| ((Free c, ts), (Free d, us)) => rigrig c d (unifyT thy) ts us
| ((Bound i, ts), (Bound j, us)) =>
rigrig (i, dummyT) (j, dummyT) (K o K) ts us
| ((Abs (_, T, t), []), (Abs (_, U, u), [])) =>
decompose thy (T::Ts) (t, u) (unifyT thy env T U)
| ((Abs (_, T, t), []), _) =>
decompose thy (T::Ts) (t, Term.incr_boundvars 1 u $ Bound 0) env
| (_, (Abs (_, T, u), [])) =>
decompose thy (T::Ts) (Term.incr_boundvars 1 t $ Bound 0, u) env
| _ => ([(mk_abs Ts t, mk_abs Ts u)], env)
end;
fun make_constraints_cprf thy env cprf =
let
fun add_cnstrt Ts prop prf cs env vTs (t, u) =
let
val t' = mk_abs Ts t;
val u' = mk_abs Ts u
in
(prop, prf, cs, Pattern.unify (Context.Theory thy) (t', u') env, vTs)
handle Pattern.Pattern =>
let val (cs', env') = decompose thy [] (t', u') env
in (prop, prf, cs @ cs', env', vTs) end
| Pattern.Unif => cantunify thy (Envir.norm_term env t', Envir.norm_term env u')
end;
fun mk_cnstrts_atom env vTs prop opTs prf =
let
val prop_types = type_variables_of prop;
val (Ts, env') =
(case opTs of
NONE => fold_map (mk_tvar o Type.sort_of_atyp) prop_types env
| SOME Ts => (Ts, env));
val prop' = subst_atomic_types (prop_types ~~ Ts)
(forall_intr_variables_term prop) handle ListPair.UnequalLengths =>
error ("Wrong number of type arguments for " ^
quote (Thm_Name.print_pos (guess_name prf)))
in (prop', change_types (SOME Ts) prf, [], env', vTs) end;
fun head_norm (prop, prf, cnstrts, env, vTs) =
(Envir.head_norm env prop, prf, cnstrts, env, vTs);
fun mk_cnstrts env _ Hs vTs (PBound i) = ((nth Hs i, PBound i, [], env, vTs)
handle General.Subscript => error ("mk_cnstrts: bad variable index " ^ string_of_int i))
| mk_cnstrts env Ts Hs vTs (Abst (s, opT, cprf)) =
let
val (T, env') =
(case opT of
NONE => mk_tvar [] env
| SOME T => (T, env));
val (t, prf, cnstrts, env'', vTs') =
mk_cnstrts env' (T::Ts) (map (Term.incr_boundvars 1) Hs) vTs cprf;
in
(Const ("Pure.all", (T --> propT) --> propT) $ Abs (s, T, t), Abst (s, SOME T, prf),
cnstrts, env'', vTs')
end
| mk_cnstrts env Ts Hs vTs (AbsP (s, SOME t, cprf)) =
let
val (t', _, vTs', env') = infer_type thy env Ts vTs t;
val (u, prf, cnstrts, env'', vTs'') = mk_cnstrts env' Ts (t'::Hs) vTs' cprf;
in (Logic.mk_implies (t', u), AbsP (s, SOME t', prf), cnstrts, env'', vTs'')
end
| mk_cnstrts env Ts Hs vTs (AbsP (s, NONE, cprf)) =
let
val (t, env') = mk_var env Ts propT;
val (u, prf, cnstrts, env'', vTs') = mk_cnstrts env' Ts (t::Hs) vTs cprf;
in (Logic.mk_implies (t, u), AbsP (s, SOME t, prf), cnstrts, env'', vTs')
end
| mk_cnstrts env Ts Hs vTs (cprf1 %% cprf2) =
let val (u, prf2, cnstrts, env', vTs') = mk_cnstrts env Ts Hs vTs cprf2
in (case head_norm (mk_cnstrts env' Ts Hs vTs' cprf1) of
(Const ("Pure.imp", _) $ u' $ t', prf1, cnstrts', env'', vTs'') =>
add_cnstrt Ts t' (prf1 %% prf2) (cnstrts' @ cnstrts)
env'' vTs'' (u, u')
| (t, prf1, cnstrts', env'', vTs'') =>
let val (v, env''') = mk_var env'' Ts propT
in add_cnstrt Ts v (prf1 %% prf2) (cnstrts' @ cnstrts)
env''' vTs'' (t, Logic.mk_implies (u, v))
end)
end
| mk_cnstrts env Ts Hs vTs (cprf % SOME t) =
let val (t', U, vTs1, env1) = infer_type thy env Ts vTs t
in (case head_norm (mk_cnstrts env1 Ts Hs vTs1 cprf) of
(Const ("Pure.all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
prf, cnstrts, env2, vTs2) =>
let val env3 = unifyT thy env2 T U
in (betapply (f, t'), prf % SOME t', cnstrts, env3, vTs2)
end
| (u, prf, cnstrts, env2, vTs2) =>
let val (v, env3) = mk_var env2 Ts (U --> propT);
in
add_cnstrt Ts (v $ t') (prf % SOME t') cnstrts env3 vTs2
(u, Const ("Pure.all", (U --> propT) --> propT) $ v)
end)
end
| mk_cnstrts env Ts Hs vTs (cprf % NONE) =
(case head_norm (mk_cnstrts env Ts Hs vTs cprf) of
(Const ("Pure.all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
prf, cnstrts, env', vTs') =>
let val (t, env'') = mk_var env' Ts T
in (betapply (f, t), prf % SOME t, cnstrts, env'', vTs')
end
| (u, prf, cnstrts, env', vTs') =>
let
val (T, env1) = mk_tvar [] env';
val (v, env2) = mk_var env1 Ts (T --> propT);
val (t, env3) = mk_var env2 Ts T
in
add_cnstrt Ts (v $ t) (prf % SOME t) cnstrts env3 vTs'
(u, Const ("Pure.all", (T --> propT) --> propT) $ v)
end)
| mk_cnstrts env _ _ vTs (prf as PThm ({prop, types = opTs, ...}, _)) =
mk_cnstrts_atom env vTs prop opTs prf
| mk_cnstrts env _ _ vTs (prf as PAxm (_, prop, opTs)) =
mk_cnstrts_atom env vTs prop opTs prf
| mk_cnstrts env _ _ vTs (prf as PClass C) =
mk_cnstrts_atom env vTs (Logic.mk_of_class C) NONE prf
| mk_cnstrts env _ _ vTs (prf as Oracle (_, prop, opTs)) =
mk_cnstrts_atom env vTs prop opTs prf
| mk_cnstrts env _ _ vTs (Hyp t) = (t, Hyp t, [], env, vTs)
| mk_cnstrts _ _ _ _ MinProof = raise MIN_PROOF ()
in mk_cnstrts env [] [] Symtab.empty cprf end;
(* update list of free variables of constraints *)
fun upd_constrs env cs =
let
val tenv = Envir.term_env env;
val tyenv = Envir.type_env env;
val dom = []
|> Vartab.fold (cons o #1) tenv
|> Vartab.fold (cons o #1) tyenv;
val vran = []
|> Vartab.fold (Term.add_var_names o #2 o #2) tenv
|> Vartab.fold (Term.add_tvar_namesT o #2 o #2) tyenv;
fun check_cs [] = []
| check_cs ((u, p, vs) :: ps) =
let val vs' = subtract (op =) dom vs in
if vs = vs' then (u, p, vs) :: check_cs ps
else (true, p, fold (insert op =) vs' vran) :: check_cs ps
end;
in check_cs cs end;
(* solution of constraints *)
fun solve _ [] bigenv = bigenv
| solve thy cs bigenv =
let
fun search _ [] =
error ("Unsolvable constraints:\n" ^
Pretty.string_of (Pretty.chunks (map (fn (_, p, _) =>
Pretty.item (Syntax.pretty_flexpair (Syntax.init_pretty_global thy)
(apply2 (Envir.norm_term bigenv) p))) cs)))
| search env ((u, p as (t1, t2), vs)::ps) =
if u then
let
val tn1 = Envir.norm_term bigenv t1;
val tn2 = Envir.norm_term bigenv t2
in
if Pattern.pattern tn1 andalso Pattern.pattern tn2 then
(Pattern.unify (Context.Theory thy) (tn1, tn2) env, ps)
handle Pattern.Unif => cantunify thy (tn1, tn2)
else
let val (cs', env') = decompose thy [] (tn1, tn2) env
in if cs' = [(tn1, tn2)] then
apsnd (cons (false, (tn1, tn2), vs)) (search env ps)
else search env' (map (fn q => (true, q, vs)) cs' @ ps)
end
end
else apsnd (cons (false, p, vs)) (search env ps);
val Envir.Envir {maxidx, ...} = bigenv;
val (env, cs') = search (Envir.empty maxidx) cs;
in
solve thy (upd_constrs env cs') (Envir.merge (bigenv, env))
end;
in
(* reconstruction of proofs *)
fun reconstruct_proof thy prop cprf =
let
val (cprf' % SOME prop', thawf) = freeze_thaw_prf (cprf % SOME prop);
val (t, prf, cs, env, _) = make_constraints_cprf thy
(Envir.empty (maxidx_proof cprf ~1)) cprf';
val cs' =
map (apply2 (Envir.norm_term env)) ((t, prop') :: cs)
|> map (fn p => (true, p, Term.add_var_names (#1 p) (Term.add_var_names (#2 p) [])));
val env' = solve thy cs' env;
in thawf (norm_proof env' prf) end handle MIN_PROOF () => MinProof;
fun prop_of_atom prop Ts =
subst_atomic_types (type_variables_of prop ~~ Ts) (forall_intr_variables_term prop);
val head_norm = Envir.head_norm Envir.init;
fun prop_of0 Hs (PBound i) = nth Hs i
| prop_of0 Hs (Abst (s, SOME T, prf)) =
Logic.all_const T $ (Abs (s, T, prop_of0 Hs prf))
| prop_of0 Hs (AbsP (_, SOME t, prf)) =
Logic.mk_implies (t, prop_of0 (t :: Hs) prf)
| prop_of0 Hs (prf % SOME t) = (case head_norm (prop_of0 Hs prf) of
Const ("Pure.all", _) $ f => f $ t
| _ => error "prop_of: all expected")
| prop_of0 Hs (prf1 %% _) = (case head_norm (prop_of0 Hs prf1) of
Const ("Pure.imp", _) $ _ $ Q => Q
| _ => error "prop_of: ==> expected")
| prop_of0 _ (Hyp t) = t
| prop_of0 _ (PThm ({prop, types = SOME Ts, ...}, _)) = prop_of_atom prop Ts
| prop_of0 _ (PAxm (_, prop, SOME Ts)) = prop_of_atom prop Ts
| prop_of0 _ (PClass C) = Logic.mk_of_class C
| prop_of0 _ (Oracle (_, prop, SOME Ts)) = prop_of_atom prop Ts
| prop_of0 _ _ = error "prop_of: partial proof object";
val prop_of' = Envir.beta_eta_contract oo prop_of0;
val prop_of = prop_of' [];
(* expand and reconstruct subproofs *)
fun expand_name_empty (header: thm_header) =
if Thm_Name.is_empty (#1 (#thm_name header)) then SOME Thm_Name.none else NONE;
fun expand_proof thy expand_name prf =
let
fun expand seen maxidx (AbsP (s, t, prf)) =
let val (seen', maxidx', prf') = expand seen maxidx prf
in (seen', maxidx', AbsP (s, t, prf')) end
| expand seen maxidx (Abst (s, T, prf)) =
let val (seen', maxidx', prf') = expand seen maxidx prf
in (seen', maxidx', Abst (s, T, prf')) end
| expand seen maxidx (prf1 %% prf2) =
let
val (seen', maxidx', prf1') = expand seen maxidx prf1;
val (seen'', maxidx'', prf2') = expand seen' maxidx' prf2;
in (seen'', maxidx'', prf1' %% prf2') end
| expand seen maxidx (prf % t) =
let val (seen', maxidx', prf') = expand seen maxidx prf
in (seen', maxidx', prf' % t) end
| expand seen maxidx (prf as PThm (header, thm_body)) =
let val {serial, command_pos, theory_name, thm_name, prop, types} = header in
(case expand_name header of
SOME thm_name' =>
if #1 (#1 thm_name') = "" andalso is_some types then
let
val (seen', maxidx', prf') =
(case Inttab.lookup seen serial of
NONE =>
let
val prf1 =
thm_body_proof_open thm_body
|> reconstruct_proof thy prop
|> forall_intr_variables prop;
val (seen1, maxidx1, prf2) = expand_init seen prf1
val seen2 = seen1 |> Inttab.update (serial, (maxidx1, prf2));
in (seen2, maxidx1, prf2) end
| SOME (maxidx1, prf1) => (seen, maxidx1, prf1));
val prf'' = prf'
|> incr_indexes (maxidx + 1) |> app_types (maxidx + 1) prop (the types);
in (seen', maxidx' + maxidx + 1, prf'') end
else if thm_name' <> thm_name then
(seen, maxidx,
PThm (thm_header serial command_pos theory_name thm_name' prop types, thm_body))
else (seen, maxidx, prf)
| NONE => (seen, maxidx, prf))
end
| expand seen maxidx prf = (seen, maxidx, prf)
and expand_init seen prf = expand seen (maxidx_proof prf ~1) prf;
in #3 (expand_init Inttab.empty prf) end;
end;
(** promises **)
fun fulfill_norm_proof thy ps body0 =
let
val _ = consolidate_bodies (map #2 ps @ [body0]);
val PBody {oracles = oracles0, thms = thms0, zboxes = zboxes0, zproof, proof = proof0} = body0;
val oracles =
unions_oracles
(fold (fn (_, PBody {oracles, ...}) => not (null oracles) ? cons oracles) ps [oracles0]);
val thms =
unions_thms (fold (fn (_, PBody {thms, ...}) => not (null thms) ? cons thms) ps [thms0]);
val zboxes =
ZTerm.unions_zboxes
(fold (fn (_, PBody {zboxes, ...}) => not (null zboxes) ? cons zboxes) ps [zboxes0]);
val proof = rew_proof thy proof0;
in
PBody {oracles = oracles, thms = thms, zboxes = zboxes, zproof = zproof, proof = proof}
end;
fun fulfill_proof_future thy promises (postproc: proof_body -> proof_body) body =
let
fun fulfill () =
postproc (fulfill_norm_proof thy (map (apsnd Future.join) promises) (Future.join body));
in
if null promises then Future.map postproc body
else if Future.is_finished body andalso length promises = 1 then
Future.map (fn _ => fulfill ()) (snd (hd promises))
else
(singleton o Future.forks)
{name = "Proofterm.fulfill_proof_future", group = NONE,
deps = Future.task_of body :: map (Future.task_of o snd) promises, pri = 1,
interrupts = true}
fulfill
end;
(** theorems **)
(* PThm nodes *)
fun prune_body body =
if Options.default_bool "prune_proofs"
then Future.map no_proof body
else body;
fun export_enabled () = Options.default_bool "export_proofs";
fun export_standard_enabled () = Options.default_bool "export_standard_proofs";
fun export_proof_boxes_required thy =
Context.theory_long_name thy = Context.PureN orelse
(export_enabled () andalso not (export_standard_enabled ()));
fun export_proof_boxes bodies =
let
fun export_thm (i, thm_node) boxes =
if Inttab.defined boxes i then boxes
else
boxes
|> Inttab.update (i, thm_node_export thm_node)
|> fold export_thm (thm_node_thms thm_node);
fun export_body (PBody {thms, ...}) = fold export_thm thms;
val exports = Inttab.build (fold export_body bodies) |> Inttab.dest;
in List.app (Lazy.force o #2) exports end;
local
fun export_proof thy i prop0 proof0 =
let
val {typargs, args, prop, proof} =
ZTerm.standard_vars Name.context
(ZTerm.zterm_of thy prop0, SOME (proof_to_zproof thy (no_thm_names proof0)));
val xml = (typargs, (args, (prop, the proof))) |>
let
open XML.Encode Term_XML.Encode;
val encode_tfrees = list (pair string sort);
val encode_frees = list (pair string ZTerm.encode_ztyp);
val encode_term = ZTerm.encode_zterm {typed_vars = false};
val encode_proof = ZTerm.encode_zproof {typed_vars = false};
in pair encode_tfrees (pair encode_frees (pair encode_term encode_proof)) end;
in
Export.export_params (Context.Theory thy)
{theory_name = Context.theory_long_name thy,
binding = Path.binding0 (Path.make ["proofs", string_of_int i]),
executable = false,
compress = true,
strict = false} xml
end;
fun prepare_thm_proof unconstrain thy sorts_proof
(name, pos) shyps hyps concl promises
(PBody {oracles = oracles0, thms = thms0, zboxes = zboxes0, zproof = zproof0, proof = proof0}) =
let
val named = not (Thm_Name.is_empty name);
val prop = Logic.list_implies (hyps, concl);
val args = prop_args prop;
val (ucontext as {typ_operation, ...}, prop1) = Logic.unconstrainT shyps prop;
val proofs = get_proofs_level ();
val (zproof1, zboxes1) =
if zproof_enabled proofs then
ZTerm.add_box_proof {unconstrain = unconstrain} thy hyps concl zproof0 zboxes0
else (ZNop, []);
val proof1 =
if proof_enabled proofs then fold_rev implies_intr_proof hyps proof0
else MinProof;
fun new_prf () =
let
val i = proof_serial ();
val unconstrainT = unconstrainT_proof (Sign.classes_of thy) sorts_proof ucontext;
val postproc = map_proof_of (unconstrainT #> named ? rew_proof thy);
val body1 =
{oracles = oracles0, thms = thms0, zboxes = [], zproof = ZNop, proof = proof1};
in (i, fulfill_proof_future thy promises postproc (Future.value (PBody body1))) end;
val (i, body') =
(*somewhat non-deterministic proof boxes!*)
if export_enabled () then new_prf ()
else
(case strip_combt (proof_head_of proof0) of
(PThm ({serial = ser, thm_name = (a, _), prop = prop', types = NONE, ...}, thm_body'), args') =>
if (#1 a = "" orelse a = name) andalso prop' = prop1 andalso args' = args then
let
val Thm_Body {body = body', ...} = thm_body';
val i = if #1 a = "" andalso named then proof_serial () else ser;
in (i, body' |> ser <> i ? Future.map (map_proof_of (rew_proof thy))) end
else new_prf ()
| _ => new_prf ());
val exp_proof = Future.map proof_of body';
val open_proof = not named ? rew_proof thy;
fun export_body () =
Future.join exp_proof
|> open_proof
|> reconstruct_proof thy prop1
|> apply_preproc thy
|> export_proof thy i prop1;
val export =
if export_enabled () then
Lazy.lazy (fn () =>
(case Exn.capture_body export_body of
Exn.Res res => res
| Exn.Exn exn =>
if Exn.is_interrupt_breakdown exn then
raise Fail ("Resource problems while exporting proof " ^ string_of_int i)
else Exn.reraise exn))
else no_export;
val thm_body = prune_body body';
val theory_name = Context.theory_long_name thy;
val thm = (i, make_thm_node theory_name name prop1 thm_body export);
val header = thm_header i (Position.thread_data ()) theory_name (name, pos) prop1 NONE;
val head = PThm (header, Thm_Body {open_proof = open_proof, body = thm_body});
val argst =
if unconstrain then
(Same.commit o Same.map o Same.map_option o Term.map_types_same)
(typ_operation {strip_sorts = true}) args
else args;
val argsP =
if unconstrain then []
else map PClass (#outer_constraints ucontext) @ map Hyp hyps;
val proof2 = proof_combP (proof_combt' (head, argst), argsP);
val body2 = {oracles = [], thms = [thm], zboxes = zboxes1, zproof = zproof1, proof = proof2};
in (prop1, PBody body2) end;
in
fun thm_proof thy sorts_proof name shyps hyps concl promises =
prepare_thm_proof false thy sorts_proof name shyps hyps concl promises #> #2;
fun unconstrain_thm_proof thy sorts_proof shyps concl promises body =
prepare_thm_proof true thy sorts_proof Thm_Name.none
shyps [] concl promises body;
end;
(* PThm identity *)
fun get_identity shyps hyps prop prf =
let val (_, prop) = Logic.unconstrainT shyps (Logic.list_implies (hyps, prop)) in
(case term_head_of (proof_head_of prf) of
PThm ({serial, theory_name, thm_name, prop = prop', ...}, _) =>
if prop = prop'
then SOME {serial = serial, theory_name = theory_name, thm_name = thm_name} else NONE
| _ => NONE)
end;
fun get_approximative_name shyps hyps prop prf =
Option.map #thm_name (get_identity shyps hyps prop prf) |> the_default Thm_Name.none;
(* thm_id *)
type thm_id = {serial: serial, theory_name: string};
fun make_thm_id (serial, theory_name) : thm_id =
{serial = serial, theory_name = theory_name};
fun thm_header_id ({serial, theory_name, ...}: thm_header) =
make_thm_id (serial, theory_name);
fun thm_id (serial, thm_node) : thm_id =
make_thm_id (serial, thm_node_theory_name thm_node);
fun get_id shyps hyps prop prf : thm_id option =
(case get_identity shyps hyps prop prf of
NONE => NONE
| SOME {serial, theory_name, thm_name = (thm_name, _), ...} =>
if Thm_Name.is_empty thm_name then NONE else SOME (make_thm_id (serial, theory_name)));
fun this_id NONE _ = false
| this_id (SOME (thm_id: thm_id)) (thm_id': thm_id) = #serial thm_id = #serial thm_id';
(* proof boxes: intermediate PThm nodes *)
fun proof_boxes {included, excluded} proofs =
let
fun boxes_of (Abst (_, _, prf)) = boxes_of prf
| boxes_of (AbsP (_, _, prf)) = boxes_of prf
| boxes_of (prf % _) = boxes_of prf
| boxes_of (prf1 %% prf2) = boxes_of prf1 #> boxes_of prf2
| boxes_of (PThm (header as {serial = i, ...}, thm_body)) =
(fn boxes =>
let val thm_id = thm_header_id header in
if Inttab.defined boxes i orelse (excluded thm_id andalso not (included thm_id))
then boxes
else
let
val prf' = thm_body_proof_open thm_body;
val boxes' = Inttab.update (i, (header, prf')) boxes;
in boxes_of prf' boxes' end
end)
| boxes_of MinProof = raise MIN_PROOF ()
| boxes_of _ = I;
in Inttab.fold_rev (cons o #2) (Inttab.build (fold boxes_of proofs)) [] end;
end;
structure Basic_Proofterm =
struct
datatype proof = datatype Proofterm.proof
datatype proof_body = datatype Proofterm.proof_body
val op %> = Proofterm.%>
end;
open Basic_Proofterm;