(* Title: HOL/ex/Classical
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header{*Classical Predicate Calculus Problems*}
theory Classical imports Main begin
subsection{*Traditional Classical Reasoner*}
text{*The machine "griffon" mentioned below is a 2.5GHz Power Mac G5.*}
text{*Taken from @{text "FOL/Classical.thy"}. When porting examples from
first-order logic, beware of the precedence of @{text "="} versus @{text
"\<leftrightarrow>"}.*}
lemma "(P --> Q | R) --> (P-->Q) | (P-->R)"
by blast
text{*If and only if*}
lemma "(P=Q) = (Q = (P::bool))"
by blast
lemma "~ (P = (~P))"
by blast
text{*Sample problems from
F. J. Pelletier,
Seventy-Five Problems for Testing Automatic Theorem Provers,
J. Automated Reasoning 2 (1986), 191-216.
Errata, JAR 4 (1988), 236-236.
The hardest problems -- judging by experience with several theorem provers,
including matrix ones -- are 34 and 43.
*}
subsubsection{*Pelletier's examples*}
text{*1*}
lemma "(P-->Q) = (~Q --> ~P)"
by blast
text{*2*}
lemma "(~ ~ P) = P"
by blast
text{*3*}
lemma "~(P-->Q) --> (Q-->P)"
by blast
text{*4*}
lemma "(~P-->Q) = (~Q --> P)"
by blast
text{*5*}
lemma "((P|Q)-->(P|R)) --> (P|(Q-->R))"
by blast
text{*6*}
lemma "P | ~ P"
by blast
text{*7*}
lemma "P | ~ ~ ~ P"
by blast
text{*8. Peirce's law*}
lemma "((P-->Q) --> P) --> P"
by blast
text{*9*}
lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
by blast
text{*10*}
lemma "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P=Q)"
by blast
text{*11. Proved in each direction (incorrectly, says Pelletier!!) *}
lemma "P=(P::bool)"
by blast
text{*12. "Dijkstra's law"*}
lemma "((P = Q) = R) = (P = (Q = R))"
by blast
text{*13. Distributive law*}
lemma "(P | (Q & R)) = ((P | Q) & (P | R))"
by blast
text{*14*}
lemma "(P = Q) = ((Q | ~P) & (~Q|P))"
by blast
text{*15*}
lemma "(P --> Q) = (~P | Q)"
by blast
text{*16*}
lemma "(P-->Q) | (Q-->P)"
by blast
text{*17*}
lemma "((P & (Q-->R))-->S) = ((~P | Q | S) & (~P | ~R | S))"
by blast
subsubsection{*Classical Logic: examples with quantifiers*}
lemma "(\<forall>x. P(x) & Q(x)) = ((\<forall>x. P(x)) & (\<forall>x. Q(x)))"
by blast
lemma "(\<exists>x. P-->Q(x)) = (P --> (\<exists>x. Q(x)))"
by blast
lemma "(\<exists>x. P(x)-->Q) = ((\<forall>x. P(x)) --> Q)"
by blast
lemma "((\<forall>x. P(x)) | Q) = (\<forall>x. P(x) | Q)"
by blast
text{*From Wishnu Prasetya*}
lemma "(\<forall>s. q(s) --> r(s)) & ~r(s) & (\<forall>s. ~r(s) & ~q(s) --> p(t) | q(t))
--> p(t) | r(t)"
by blast
subsubsection{*Problems requiring quantifier duplication*}
text{*Theorem B of Peter Andrews, Theorem Proving via General Matings,
JACM 28 (1981).*}
lemma "(\<exists>x. \<forall>y. P(x) = P(y)) --> ((\<exists>x. P(x)) = (\<forall>y. P(y)))"
by blast
text{*Needs multiple instantiation of the quantifier.*}
lemma "(\<forall>x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"
by blast
text{*Needs double instantiation of the quantifier*}
lemma "\<exists>x. P(x) --> P(a) & P(b)"
by blast
lemma "\<exists>z. P(z) --> (\<forall>x. P(x))"
by blast
lemma "\<exists>x. (\<exists>y. P(y)) --> P(x)"
by blast
subsubsection{*Hard examples with quantifiers*}
text{*Problem 18*}
lemma "\<exists>y. \<forall>x. P(y)-->P(x)"
by blast
text{*Problem 19*}
lemma "\<exists>x. \<forall>y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
by blast
text{*Problem 20*}
lemma "(\<forall>x y. \<exists>z. \<forall>w. (P(x)&Q(y)-->R(z)&S(w)))
--> (\<exists>x y. P(x) & Q(y)) --> (\<exists>z. R(z))"
by blast
text{*Problem 21*}
lemma "(\<exists>x. P-->Q(x)) & (\<exists>x. Q(x)-->P) --> (\<exists>x. P=Q(x))"
by blast
text{*Problem 22*}
lemma "(\<forall>x. P = Q(x)) --> (P = (\<forall>x. Q(x)))"
by blast
text{*Problem 23*}
lemma "(\<forall>x. P | Q(x)) = (P | (\<forall>x. Q(x)))"
by blast
text{*Problem 24*}
lemma "~(\<exists>x. S(x)&Q(x)) & (\<forall>x. P(x) --> Q(x)|R(x)) &
(~(\<exists>x. P(x)) --> (\<exists>x. Q(x))) & (\<forall>x. Q(x)|R(x) --> S(x))
--> (\<exists>x. P(x)&R(x))"
by blast
text{*Problem 25*}
lemma "(\<exists>x. P(x)) &
(\<forall>x. L(x) --> ~ (M(x) & R(x))) &
(\<forall>x. P(x) --> (M(x) & L(x))) &
((\<forall>x. P(x)-->Q(x)) | (\<exists>x. P(x)&R(x)))
--> (\<exists>x. Q(x)&P(x))"
by blast
text{*Problem 26*}
lemma "((\<exists>x. p(x)) = (\<exists>x. q(x))) &
(\<forall>x. \<forall>y. p(x) & q(y) --> (r(x) = s(y)))
--> ((\<forall>x. p(x)-->r(x)) = (\<forall>x. q(x)-->s(x)))"
by blast
text{*Problem 27*}
lemma "(\<exists>x. P(x) & ~Q(x)) &
(\<forall>x. P(x) --> R(x)) &
(\<forall>x. M(x) & L(x) --> P(x)) &
((\<exists>x. R(x) & ~ Q(x)) --> (\<forall>x. L(x) --> ~ R(x)))
--> (\<forall>x. M(x) --> ~L(x))"
by blast
text{*Problem 28. AMENDED*}
lemma "(\<forall>x. P(x) --> (\<forall>x. Q(x))) &
((\<forall>x. Q(x)|R(x)) --> (\<exists>x. Q(x)&S(x))) &
((\<exists>x. S(x)) --> (\<forall>x. L(x) --> M(x)))
--> (\<forall>x. P(x) & L(x) --> M(x))"
by blast
text{*Problem 29. Essentially the same as Principia Mathematica *11.71*}
lemma "(\<exists>x. F(x)) & (\<exists>y. G(y))
--> ( ((\<forall>x. F(x)-->H(x)) & (\<forall>y. G(y)-->J(y))) =
(\<forall>x y. F(x) & G(y) --> H(x) & J(y)))"
by blast
text{*Problem 30*}
lemma "(\<forall>x. P(x) | Q(x) --> ~ R(x)) &
(\<forall>x. (Q(x) --> ~ S(x)) --> P(x) & R(x))
--> (\<forall>x. S(x))"
by blast
text{*Problem 31*}
lemma "~(\<exists>x. P(x) & (Q(x) | R(x))) &
(\<exists>x. L(x) & P(x)) &
(\<forall>x. ~ R(x) --> M(x))
--> (\<exists>x. L(x) & M(x))"
by blast
text{*Problem 32*}
lemma "(\<forall>x. P(x) & (Q(x)|R(x))-->S(x)) &
(\<forall>x. S(x) & R(x) --> L(x)) &
(\<forall>x. M(x) --> R(x))
--> (\<forall>x. P(x) & M(x) --> L(x))"
by blast
text{*Problem 33*}
lemma "(\<forall>x. P(a) & (P(x)-->P(b))-->P(c)) =
(\<forall>x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"
by blast
text{*Problem 34 AMENDED (TWICE!!)*}
text{*Andrews's challenge*}
lemma "((\<exists>x. \<forall>y. p(x) = p(y)) =
((\<exists>x. q(x)) = (\<forall>y. p(y)))) =
((\<exists>x. \<forall>y. q(x) = q(y)) =
((\<exists>x. p(x)) = (\<forall>y. q(y))))"
by blast
text{*Problem 35*}
lemma "\<exists>x y. P x y --> (\<forall>u v. P u v)"
by blast
text{*Problem 36*}
lemma "(\<forall>x. \<exists>y. J x y) &
(\<forall>x. \<exists>y. G x y) &
(\<forall>x y. J x y | G x y -->
(\<forall>z. J y z | G y z --> H x z))
--> (\<forall>x. \<exists>y. H x y)"
by blast
text{*Problem 37*}
lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.
(P x z -->P y w) & P y z & (P y w --> (\<exists>u. Q u w))) &
(\<forall>x z. ~(P x z) --> (\<exists>y. Q y z)) &
((\<exists>x y. Q x y) --> (\<forall>x. R x x))
--> (\<forall>x. \<exists>y. R x y)"
by blast
text{*Problem 38*}
lemma "(\<forall>x. p(a) & (p(x) --> (\<exists>y. p(y) & r x y)) -->
(\<exists>z. \<exists>w. p(z) & r x w & r w z)) =
(\<forall>x. (~p(a) | p(x) | (\<exists>z. \<exists>w. p(z) & r x w & r w z)) &
(~p(a) | ~(\<exists>y. p(y) & r x y) |
(\<exists>z. \<exists>w. p(z) & r x w & r w z)))"
by blast (*beats fast!*)
text{*Problem 39*}
lemma "~ (\<exists>x. \<forall>y. F y x = (~ F y y))"
by blast
text{*Problem 40. AMENDED*}
lemma "(\<exists>y. \<forall>x. F x y = F x x)
--> ~ (\<forall>x. \<exists>y. \<forall>z. F z y = (~ F z x))"
by blast
text{*Problem 41*}
lemma "(\<forall>z. \<exists>y. \<forall>x. f x y = (f x z & ~ f x x))
--> ~ (\<exists>z. \<forall>x. f x z)"
by blast
text{*Problem 42*}
lemma "~ (\<exists>y. \<forall>x. p x y = (~ (\<exists>z. p x z & p z x)))"
by blast
text{*Problem 43!!*}
lemma "(\<forall>x::'a. \<forall>y::'a. q x y = (\<forall>z. p z x = (p z y::bool)))
--> (\<forall>x. (\<forall>y. q x y = (q y x::bool)))"
by blast
text{*Problem 44*}
lemma "(\<forall>x. f(x) -->
(\<exists>y. g(y) & h x y & (\<exists>y. g(y) & ~ h x y))) &
(\<exists>x. j(x) & (\<forall>y. g(y) --> h x y))
--> (\<exists>x. j(x) & ~f(x))"
by blast
text{*Problem 45*}
lemma "(\<forall>x. f(x) & (\<forall>y. g(y) & h x y --> j x y)
--> (\<forall>y. g(y) & h x y --> k(y))) &
~ (\<exists>y. l(y) & k(y)) &
(\<exists>x. f(x) & (\<forall>y. h x y --> l(y))
& (\<forall>y. g(y) & h x y --> j x y))
--> (\<exists>x. f(x) & ~ (\<exists>y. g(y) & h x y))"
by blast
subsubsection{*Problems (mainly) involving equality or functions*}
text{*Problem 48*}
lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"
by blast
text{*Problem 49 NOT PROVED AUTOMATICALLY.
Hard because it involves substitution for Vars
the type constraint ensures that x,y,z have the same type as a,b,u. *}
lemma "(\<exists>x y::'a. \<forall>z. z=x | z=y) & P(a) & P(b) & (~a=b)
--> (\<forall>u::'a. P(u))"
apply safe
apply (rule_tac x = a in allE, assumption)
apply (rule_tac x = b in allE, assumption, fast) --{*blast's treatment of equality can't do it*}
done
text{*Problem 50. (What has this to do with equality?) *}
lemma "(\<forall>x. P a x | (\<forall>y. P x y)) --> (\<exists>x. \<forall>y. P x y)"
by blast
text{*Problem 51*}
lemma "(\<exists>z w. \<forall>x y. P x y = (x=z & y=w)) -->
(\<exists>z. \<forall>x. \<exists>w. (\<forall>y. P x y = (y=w)) = (x=z))"
by blast
text{*Problem 52. Almost the same as 51. *}
lemma "(\<exists>z w. \<forall>x y. P x y = (x=z & y=w)) -->
(\<exists>w. \<forall>y. \<exists>z. (\<forall>x. P x y = (x=z)) = (y=w))"
by blast
text{*Problem 55*}
text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
fast DISCOVERS who killed Agatha. *}
lemma "lives(agatha) & lives(butler) & lives(charles) &
(killed agatha agatha | killed butler agatha | killed charles agatha) &
(\<forall>x y. killed x y --> hates x y & ~richer x y) &
(\<forall>x. hates agatha x --> ~hates charles x) &
(hates agatha agatha & hates agatha charles) &
(\<forall>x. lives(x) & ~richer x agatha --> hates butler x) &
(\<forall>x. hates agatha x --> hates butler x) &
(\<forall>x. ~hates x agatha | ~hates x butler | ~hates x charles) -->
killed ?who agatha"
by fast
text{*Problem 56*}
lemma "(\<forall>x. (\<exists>y. P(y) & x=f(y)) --> P(x)) = (\<forall>x. P(x) --> P(f(x)))"
by blast
text{*Problem 57*}
lemma "P (f a b) (f b c) & P (f b c) (f a c) &
(\<forall>x y z. P x y & P y z --> P x z) --> P (f a b) (f a c)"
by blast
text{*Problem 58 NOT PROVED AUTOMATICALLY*}
lemma "(\<forall>x y. f(x)=g(y)) --> (\<forall>x y. f(f(x))=f(g(y)))"
by (fast intro: arg_cong [of concl: f])
text{*Problem 59*}
lemma "(\<forall>x. P(x) = (~P(f(x)))) --> (\<exists>x. P(x) & ~P(f(x)))"
by blast
text{*Problem 60*}
lemma "\<forall>x. P x (f x) = (\<exists>y. (\<forall>z. P z y --> P z (f x)) & P x y)"
by blast
text{*Problem 62 as corrected in JAR 18 (1997), page 135*}
lemma "(\<forall>x. p a & (p x --> p(f x)) --> p(f(f x))) =
(\<forall>x. (~ p a | p x | p(f(f x))) &
(~ p a | ~ p(f x) | p(f(f x))))"
by blast
text{*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531
fast indeed copes!*}
lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
(\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &
(\<forall>x. K(x) --> ~G(x)) --> (\<exists>x. K(x) & J(x))"
by fast
text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.
It does seem obvious!*}
lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
(\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &
(\<forall>x. K(x) --> ~G(x)) --> (\<exists>x. K(x) --> ~G(x))"
by fast
text{*Attributed to Lewis Carroll by S. G. Pulman. The first or last
assumption can be deleted.*}
lemma "(\<forall>x. honest(x) & industrious(x) --> healthy(x)) &
~ (\<exists>x. grocer(x) & healthy(x)) &
(\<forall>x. industrious(x) & grocer(x) --> honest(x)) &
(\<forall>x. cyclist(x) --> industrious(x)) &
(\<forall>x. ~healthy(x) & cyclist(x) --> ~honest(x))
--> (\<forall>x. grocer(x) --> ~cyclist(x))"
by blast
lemma "(\<forall>x y. R(x,y) | R(y,x)) &
(\<forall>x y. S(x,y) & S(y,x) --> x=y) &
(\<forall>x y. R(x,y) --> S(x,y)) --> (\<forall>x y. S(x,y) --> R(x,y))"
by blast
subsection{*Model Elimination Prover*}
text{*Trying out meson with arguments*}
lemma "x < y & y < z --> ~ (z < (x::nat))"
by (meson order_less_irrefl order_less_trans)
text{*The "small example" from Bezem, Hendriks and de Nivelle,
Automatic Proof Construction in Type Theory Using Resolution,
JAR 29: 3-4 (2002), pages 253-275 *}
lemma "(\<forall>x y z. R(x,y) & R(y,z) --> R(x,z)) &
(\<forall>x. \<exists>y. R(x,y)) -->
~ (\<forall>x. P x = (\<forall>y. R(x,y) --> ~ P y))"
by (tactic{*safe_best_meson_tac 1*})
--{*In contrast, @{text meson} is SLOW: 7.6s on griffon*}
subsubsection{*Pelletier's examples*}
text{*1*}
lemma "(P --> Q) = (~Q --> ~P)"
by blast
text{*2*}
lemma "(~ ~ P) = P"
by blast
text{*3*}
lemma "~(P-->Q) --> (Q-->P)"
by blast
text{*4*}
lemma "(~P-->Q) = (~Q --> P)"
by blast
text{*5*}
lemma "((P|Q)-->(P|R)) --> (P|(Q-->R))"
by blast
text{*6*}
lemma "P | ~ P"
by blast
text{*7*}
lemma "P | ~ ~ ~ P"
by blast
text{*8. Peirce's law*}
lemma "((P-->Q) --> P) --> P"
by blast
text{*9*}
lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
by blast
text{*10*}
lemma "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P=Q)"
by blast
text{*11. Proved in each direction (incorrectly, says Pelletier!!) *}
lemma "P=(P::bool)"
by blast
text{*12. "Dijkstra's law"*}
lemma "((P = Q) = R) = (P = (Q = R))"
by blast
text{*13. Distributive law*}
lemma "(P | (Q & R)) = ((P | Q) & (P | R))"
by blast
text{*14*}
lemma "(P = Q) = ((Q | ~P) & (~Q|P))"
by blast
text{*15*}
lemma "(P --> Q) = (~P | Q)"
by blast
text{*16*}
lemma "(P-->Q) | (Q-->P)"
by blast
text{*17*}
lemma "((P & (Q-->R))-->S) = ((~P | Q | S) & (~P | ~R | S))"
by blast
subsubsection{*Classical Logic: examples with quantifiers*}
lemma "(\<forall>x. P x & Q x) = ((\<forall>x. P x) & (\<forall>x. Q x))"
by blast
lemma "(\<exists>x. P --> Q x) = (P --> (\<exists>x. Q x))"
by blast
lemma "(\<exists>x. P x --> Q) = ((\<forall>x. P x) --> Q)"
by blast
lemma "((\<forall>x. P x) | Q) = (\<forall>x. P x | Q)"
by blast
lemma "(\<forall>x. P x --> P(f x)) & P d --> P(f(f(f d)))"
by blast
text{*Needs double instantiation of EXISTS*}
lemma "\<exists>x. P x --> P a & P b"
by blast
lemma "\<exists>z. P z --> (\<forall>x. P x)"
by blast
text{*From a paper by Claire Quigley*}
lemma "\<exists>y. ((P c & Q y) | (\<exists>z. ~ Q z)) | (\<exists>x. ~ P x & Q d)"
by fast
subsubsection{*Hard examples with quantifiers*}
text{*Problem 18*}
lemma "\<exists>y. \<forall>x. P y --> P x"
by blast
text{*Problem 19*}
lemma "\<exists>x. \<forall>y z. (P y --> Q z) --> (P x --> Q x)"
by blast
text{*Problem 20*}
lemma "(\<forall>x y. \<exists>z. \<forall>w. (P x & Q y --> R z & S w))
--> (\<exists>x y. P x & Q y) --> (\<exists>z. R z)"
by blast
text{*Problem 21*}
lemma "(\<exists>x. P --> Q x) & (\<exists>x. Q x --> P) --> (\<exists>x. P=Q x)"
by blast
text{*Problem 22*}
lemma "(\<forall>x. P = Q x) --> (P = (\<forall>x. Q x))"
by blast
text{*Problem 23*}
lemma "(\<forall>x. P | Q x) = (P | (\<forall>x. Q x))"
by blast
text{*Problem 24*} (*The first goal clause is useless*)
lemma "~(\<exists>x. S x & Q x) & (\<forall>x. P x --> Q x | R x) &
(~(\<exists>x. P x) --> (\<exists>x. Q x)) & (\<forall>x. Q x | R x --> S x)
--> (\<exists>x. P x & R x)"
by blast
text{*Problem 25*}
lemma "(\<exists>x. P x) &
(\<forall>x. L x --> ~ (M x & R x)) &
(\<forall>x. P x --> (M x & L x)) &
((\<forall>x. P x --> Q x) | (\<exists>x. P x & R x))
--> (\<exists>x. Q x & P x)"
by blast
text{*Problem 26; has 24 Horn clauses*}
lemma "((\<exists>x. p x) = (\<exists>x. q x)) &
(\<forall>x. \<forall>y. p x & q y --> (r x = s y))
--> ((\<forall>x. p x --> r x) = (\<forall>x. q x --> s x))"
by blast
text{*Problem 27; has 13 Horn clauses*}
lemma "(\<exists>x. P x & ~Q x) &
(\<forall>x. P x --> R x) &
(\<forall>x. M x & L x --> P x) &
((\<exists>x. R x & ~ Q x) --> (\<forall>x. L x --> ~ R x))
--> (\<forall>x. M x --> ~L x)"
by blast
text{*Problem 28. AMENDED; has 14 Horn clauses*}
lemma "(\<forall>x. P x --> (\<forall>x. Q x)) &
((\<forall>x. Q x | R x) --> (\<exists>x. Q x & S x)) &
((\<exists>x. S x) --> (\<forall>x. L x --> M x))
--> (\<forall>x. P x & L x --> M x)"
by blast
text{*Problem 29. Essentially the same as Principia Mathematica *11.71.
62 Horn clauses*}
lemma "(\<exists>x. F x) & (\<exists>y. G y)
--> ( ((\<forall>x. F x --> H x) & (\<forall>y. G y --> J y)) =
(\<forall>x y. F x & G y --> H x & J y))"
by blast
text{*Problem 30*}
lemma "(\<forall>x. P x | Q x --> ~ R x) & (\<forall>x. (Q x --> ~ S x) --> P x & R x)
--> (\<forall>x. S x)"
by blast
text{*Problem 31; has 10 Horn clauses; first negative clauses is useless*}
lemma "~(\<exists>x. P x & (Q x | R x)) &
(\<exists>x. L x & P x) &
(\<forall>x. ~ R x --> M x)
--> (\<exists>x. L x & M x)"
by blast
text{*Problem 32*}
lemma "(\<forall>x. P x & (Q x | R x)-->S x) &
(\<forall>x. S x & R x --> L x) &
(\<forall>x. M x --> R x)
--> (\<forall>x. P x & M x --> L x)"
by blast
text{*Problem 33; has 55 Horn clauses*}
lemma "(\<forall>x. P a & (P x --> P b)-->P c) =
(\<forall>x. (~P a | P x | P c) & (~P a | ~P b | P c))"
by blast
text{*Problem 34: Andrews's challenge has 924 Horn clauses*}
lemma "((\<exists>x. \<forall>y. p x = p y) = ((\<exists>x. q x) = (\<forall>y. p y))) =
((\<exists>x. \<forall>y. q x = q y) = ((\<exists>x. p x) = (\<forall>y. q y)))"
by blast
text{*Problem 35*}
lemma "\<exists>x y. P x y --> (\<forall>u v. P u v)"
by blast
text{*Problem 36; has 15 Horn clauses*}
lemma "(\<forall>x. \<exists>y. J x y) & (\<forall>x. \<exists>y. G x y) &
(\<forall>x y. J x y | G x y --> (\<forall>z. J y z | G y z --> H x z))
--> (\<forall>x. \<exists>y. H x y)"
by blast
text{*Problem 37; has 10 Horn clauses*}
lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.
(P x z --> P y w) & P y z & (P y w --> (\<exists>u. Q u w))) &
(\<forall>x z. ~P x z --> (\<exists>y. Q y z)) &
((\<exists>x y. Q x y) --> (\<forall>x. R x x))
--> (\<forall>x. \<exists>y. R x y)"
by blast --{*causes unification tracing messages*}
text{*Problem 38*} text{*Quite hard: 422 Horn clauses!!*}
lemma "(\<forall>x. p a & (p x --> (\<exists>y. p y & r x y)) -->
(\<exists>z. \<exists>w. p z & r x w & r w z)) =
(\<forall>x. (~p a | p x | (\<exists>z. \<exists>w. p z & r x w & r w z)) &
(~p a | ~(\<exists>y. p y & r x y) |
(\<exists>z. \<exists>w. p z & r x w & r w z)))"
by blast
text{*Problem 39*}
lemma "~ (\<exists>x. \<forall>y. F y x = (~F y y))"
by blast
text{*Problem 40. AMENDED*}
lemma "(\<exists>y. \<forall>x. F x y = F x x)
--> ~ (\<forall>x. \<exists>y. \<forall>z. F z y = (~F z x))"
by blast
text{*Problem 41*}
lemma "(\<forall>z. (\<exists>y. (\<forall>x. f x y = (f x z & ~ f x x))))
--> ~ (\<exists>z. \<forall>x. f x z)"
by blast
text{*Problem 42*}
lemma "~ (\<exists>y. \<forall>x. p x y = (~ (\<exists>z. p x z & p z x)))"
by blast
text{*Problem 43 NOW PROVED AUTOMATICALLY!!*}
lemma "(\<forall>x. \<forall>y. q x y = (\<forall>z. p z x = (p z y::bool)))
--> (\<forall>x. (\<forall>y. q x y = (q y x::bool)))"
by blast
text{*Problem 44: 13 Horn clauses; 7-step proof*}
lemma "(\<forall>x. f x --> (\<exists>y. g y & h x y & (\<exists>y. g y & ~ h x y))) &
(\<exists>x. j x & (\<forall>y. g y --> h x y))
--> (\<exists>x. j x & ~f x)"
by blast
text{*Problem 45; has 27 Horn clauses; 54-step proof*}
lemma "(\<forall>x. f x & (\<forall>y. g y & h x y --> j x y)
--> (\<forall>y. g y & h x y --> k y)) &
~ (\<exists>y. l y & k y) &
(\<exists>x. f x & (\<forall>y. h x y --> l y)
& (\<forall>y. g y & h x y --> j x y))
--> (\<exists>x. f x & ~ (\<exists>y. g y & h x y))"
by blast
text{*Problem 46; has 26 Horn clauses; 21-step proof*}
lemma "(\<forall>x. f x & (\<forall>y. f y & h y x --> g y) --> g x) &
((\<exists>x. f x & ~g x) -->
(\<exists>x. f x & ~g x & (\<forall>y. f y & ~g y --> j x y))) &
(\<forall>x y. f x & f y & h x y --> ~j y x)
--> (\<forall>x. f x --> g x)"
by blast
text{*Problem 47. Schubert's Steamroller.
26 clauses; 63 Horn clauses.
87094 inferences so far. Searching to depth 36*}
lemma "(\<forall>x. wolf x \<longrightarrow> animal x) & (\<exists>x. wolf x) &
(\<forall>x. fox x \<longrightarrow> animal x) & (\<exists>x. fox x) &
(\<forall>x. bird x \<longrightarrow> animal x) & (\<exists>x. bird x) &
(\<forall>x. caterpillar x \<longrightarrow> animal x) & (\<exists>x. caterpillar x) &
(\<forall>x. snail x \<longrightarrow> animal x) & (\<exists>x. snail x) &
(\<forall>x. grain x \<longrightarrow> plant x) & (\<exists>x. grain x) &
(\<forall>x. animal x \<longrightarrow>
((\<forall>y. plant y \<longrightarrow> eats x y) \<or>
(\<forall>y. animal y & smaller_than y x &
(\<exists>z. plant z & eats y z) \<longrightarrow> eats x y))) &
(\<forall>x y. bird y & (snail x \<or> caterpillar x) \<longrightarrow> smaller_than x y) &
(\<forall>x y. bird x & fox y \<longrightarrow> smaller_than x y) &
(\<forall>x y. fox x & wolf y \<longrightarrow> smaller_than x y) &
(\<forall>x y. wolf x & (fox y \<or> grain y) \<longrightarrow> ~eats x y) &
(\<forall>x y. bird x & caterpillar y \<longrightarrow> eats x y) &
(\<forall>x y. bird x & snail y \<longrightarrow> ~eats x y) &
(\<forall>x. (caterpillar x \<or> snail x) \<longrightarrow> (\<exists>y. plant y & eats x y))
\<longrightarrow> (\<exists>x y. animal x & animal y & (\<exists>z. grain z & eats y z & eats x y))"
by (tactic{*safe_best_meson_tac 1*})
--{*Nearly twice as fast as @{text meson},
which performs iterative deepening rather than best-first search*}
text{*The Los problem. Circulated by John Harrison*}
lemma "(\<forall>x y z. P x y & P y z --> P x z) &
(\<forall>x y z. Q x y & Q y z --> Q x z) &
(\<forall>x y. P x y --> P y x) &
(\<forall>x y. P x y | Q x y)
--> (\<forall>x y. P x y) | (\<forall>x y. Q x y)"
by meson
text{*A similar example, suggested by Johannes Schumann and
credited to Pelletier*}
lemma "(\<forall>x y z. P x y --> P y z --> P x z) -->
(\<forall>x y z. Q x y --> Q y z --> Q x z) -->
(\<forall>x y. Q x y --> Q y x) --> (\<forall>x y. P x y | Q x y) -->
(\<forall>x y. P x y) | (\<forall>x y. Q x y)"
by meson
text{*Problem 50. What has this to do with equality?*}
lemma "(\<forall>x. P a x | (\<forall>y. P x y)) --> (\<exists>x. \<forall>y. P x y)"
by blast
text{*Problem 54: NOT PROVED*}
lemma "(\<forall>y::'a. \<exists>z. \<forall>x. F x z = (x=y)) -->
~ (\<exists>w. \<forall>x. F x w = (\<forall>u. F x u --> (\<exists>y. F y u & ~ (\<exists>z. F z u & F z y))))"
oops
text{*Problem 55*}
text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
@{text meson} cannot report who killed Agatha. *}
lemma "lives agatha & lives butler & lives charles &
(killed agatha agatha | killed butler agatha | killed charles agatha) &
(\<forall>x y. killed x y --> hates x y & ~richer x y) &
(\<forall>x. hates agatha x --> ~hates charles x) &
(hates agatha agatha & hates agatha charles) &
(\<forall>x. lives x & ~richer x agatha --> hates butler x) &
(\<forall>x. hates agatha x --> hates butler x) &
(\<forall>x. ~hates x agatha | ~hates x butler | ~hates x charles) -->
(\<exists>x. killed x agatha)"
by meson
text{*Problem 57*}
lemma "P (f a b) (f b c) & P (f b c) (f a c) &
(\<forall>x y z. P x y & P y z --> P x z) --> P (f a b) (f a c)"
by blast
text{*Problem 58: Challenge found on info-hol *}
lemma "\<forall>P Q R x. \<exists>v w. \<forall>y z. P x & Q y --> (P v | R w) & (R z --> Q v)"
by blast
text{*Problem 59*}
lemma "(\<forall>x. P x = (~P(f x))) --> (\<exists>x. P x & ~P(f x))"
by blast
text{*Problem 60*}
lemma "\<forall>x. P x (f x) = (\<exists>y. (\<forall>z. P z y --> P z (f x)) & P x y)"
by blast
text{*Problem 62 as corrected in JAR 18 (1997), page 135*}
lemma "(\<forall>x. p a & (p x --> p(f x)) --> p(f(f x))) =
(\<forall>x. (~ p a | p x | p(f(f x))) &
(~ p a | ~ p(f x) | p(f(f x))))"
by blast
text{** Charles Morgan's problems **}
lemma
assumes a: "\<forall>x y. T(i x(i y x))"
and b: "\<forall>x y z. T(i (i x (i y z)) (i (i x y) (i x z)))"
and c: "\<forall>x y. T(i (i (n x) (n y)) (i y x))"
and c': "\<forall>x y. T(i (i y x) (i (n x) (n y)))"
and d: "\<forall>x y. T(i x y) & T x --> T y"
shows True
proof -
from a b d have "\<forall>x. T(i x x)" by blast
from a b c d have "\<forall>x. T(i x (n(n x)))" --{*Problem 66*}
by meson
--{*SLOW: 18s on griffon. 208346 inferences, depth 23 *}
from a b c d have "\<forall>x. T(i (n(n x)) x)" --{*Problem 67*}
by meson
--{*4.9s on griffon. 51061 inferences, depth 21 *}
from a b c' d have "\<forall>x. T(i x (n(n x)))"
--{*Problem 68: not proved. Listed as satisfiable in TPTP (LCL078-1)*}
oops
text{*Problem 71, as found in TPTP (SYN007+1.005)*}
lemma "p1 = (p2 = (p3 = (p4 = (p5 = (p1 = (p2 = (p3 = (p4 = p5))))))))"
by blast
text{*A manual resolution proof of problem 19.*}
lemma "\<exists>x. \<forall>y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
proof (rule ccontr, skolemize, make_clauses)
fix x
assume P: "\<And>U. \<not> P U \<Longrightarrow> False"
and Q: "\<And>U. Q U \<Longrightarrow> False"
and PQ: "\<lbrakk>P x; \<not> Q x\<rbrakk> \<Longrightarrow> False"
have cl4: "\<And>U. \<not> Q x \<Longrightarrow> False"
by (rule P [binary 0 PQ 0])
show "False"
by (rule Q [binary 0 cl4 0])
qed
end