(* Title: HOL/Inductive.thy
ID: $Id$
Author: Markus Wenzel, TU Muenchen
License: GPL (GNU GENERAL PUBLIC LICENSE)
Setup packages for inductive sets and types etc.
*)
theory Inductive = Gfp + Sum_Type + Relation
files
("Tools/induct_method.ML")
("Tools/inductive_package.ML")
("Tools/datatype_aux.ML")
("Tools/datatype_prop.ML")
("Tools/datatype_rep_proofs.ML")
("Tools/datatype_abs_proofs.ML")
("Tools/datatype_package.ML")
("Tools/primrec_package.ML"):
(* handling of proper rules *)
constdefs
forall :: "('a => bool) => bool"
"forall P == \<forall>x. P x"
implies :: "bool => bool => bool"
"implies A B == A --> B"
equal :: "'a => 'a => bool"
"equal x y == x = y"
conj :: "bool => bool => bool"
"conj A B == A & B"
lemma forall_eq: "(!!x. P x) == Trueprop (forall (\<lambda>x. P x))"
by (simp only: atomize_all forall_def)
lemma implies_eq: "(A ==> B) == Trueprop (implies A B)"
by (simp only: atomize_imp implies_def)
lemma equal_eq: "(x == y) == Trueprop (equal x y)"
by (simp only: atomize_eq equal_def)
lemma forall_conj: "forall (\<lambda>x. conj (A x) (B x)) = conj (forall A) (forall B)"
by (unfold forall_def conj_def) blast
lemma implies_conj: "implies C (conj A B) = conj (implies C A) (implies C B)"
by (unfold implies_def conj_def) blast
lemma conj_curry: "(conj A B ==> C) == (A ==> B ==> C)"
by (simp only: atomize_imp atomize_eq conj_def) (rule equal_intr_rule, blast+)
lemmas inductive_atomize = forall_eq implies_eq equal_eq
lemmas inductive_rulify1 = inductive_atomize [symmetric, standard]
lemmas inductive_rulify2 = forall_def implies_def equal_def conj_def
lemmas inductive_conj = forall_conj implies_conj conj_curry
hide const forall implies equal conj
(* inversion of injective functions *)
constdefs
myinv :: "('a => 'b) => ('b => 'a)"
"myinv (f :: 'a => 'b) == \<lambda>y. THE x. f x = y"
lemma myinv_f_f: "inj f ==> myinv f (f x) = x"
proof -
assume "inj f"
hence "(THE x'. f x' = f x) = (THE x'. x' = x)"
by (simp only: inj_eq)
also have "... = x" by (rule the_eq_trivial)
finally (trans) show ?thesis by (unfold myinv_def)
qed
lemma f_myinv_f: "inj f ==> y \<in> range f ==> f (myinv f y) = y"
proof (unfold myinv_def)
assume inj: "inj f"
assume "y \<in> range f"
then obtain x where "y = f x" ..
hence x: "f x = y" ..
thus "f (THE x. f x = y) = y"
proof (rule theI)
fix x' assume "f x' = y"
with x have "f x' = f x" by simp
with inj show "x' = x" by (rule injD)
qed
qed
hide const myinv
(* setup packages *)
use "Tools/induct_method.ML"
setup InductMethod.setup
use "Tools/inductive_package.ML"
setup InductivePackage.setup
use "Tools/datatype_aux.ML"
use "Tools/datatype_prop.ML"
use "Tools/datatype_rep_proofs.ML"
use "Tools/datatype_abs_proofs.ML"
use "Tools/datatype_package.ML"
setup DatatypePackage.setup
use "Tools/primrec_package.ML"
setup PrimrecPackage.setup
theorems basic_monos [mono] =
subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_def2
Collect_mono in_mono vimage_mono
imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
not_all not_ex
Ball_def Bex_def
inductive_rulify2
end