src/HOL/Library/Float.thy
author hoelzl
Wed, 18 Apr 2012 14:29:21 +0200
changeset 47599 400b158f1589
parent 47230 6584098d5378
child 47600 e12289b5796b
permissions -rw-r--r--
replace the float datatype by a type with unique representation

header {* Floating-Point Numbers *}

theory Float
imports Complex_Main "~~/src/HOL/Library/Lattice_Algebras"
begin

typedef float = "{m * 2 powr e | (m :: int) (e :: int). True }"
  morphisms real_of_float float_of
  by auto

declare [[coercion "real::float\<Rightarrow>real"]]

lemmas float_of_inject[simp]
lemmas float_of_cases2 = float_of_cases[case_product float_of_cases]
lemmas float_of_cases3 = float_of_cases2[case_product float_of_cases]

defs (overloaded)
  real_of_float_def[code_unfold]: "real == real_of_float"

lemma real_of_float_eq[simp]:
  fixes f1 f2 :: float shows "real f1 = real f2 \<longleftrightarrow> f1 = f2"
  unfolding real_of_float_def real_of_float_inject ..

lemma float_of_real[simp]: "float_of (real x) = x"
  unfolding real_of_float_def by (rule real_of_float_inverse)

lemma real_float[simp]: "x \<in> float \<Longrightarrow> real (float_of x) = x"
  unfolding real_of_float_def by (rule float_of_inverse)

subsection {* Real operations preserving the representation as floating point number *}

lemma floatI: fixes m e :: int shows "m * 2 powr e = x \<Longrightarrow> x \<in> float"
  by (auto simp: float_def)

lemma zero_float[simp]: "0 \<in> float" by (auto simp: float_def)
lemma one_float[simp]: "1 \<in> float" by (intro floatI[of 1 0]) simp
lemma numeral_float[simp]: "numeral i \<in> float" by (intro floatI[of "numeral i" 0]) simp  
lemma neg_numeral_float[simp]: "neg_numeral i \<in> float" by (intro floatI[of "neg_numeral i" 0]) simp
lemma real_of_int_float[simp]: "real (x :: int) \<in> float" by (intro floatI[of x 0]) simp
lemma real_of_nat_float[simp]: "real (x ::nat) \<in> float" by (intro floatI[of x 0]) simp
lemma two_powr_int_float[simp]: "2 powr (real (i::int)) \<in> float" by (intro floatI[of 1 i]) simp
lemma two_powr_nat_float[simp]: "2 powr (real (i::nat)) \<in> float" by (intro floatI[of 1 i]) simp
lemma two_powr_minus_int_float[simp]: "2 powr - (real (i::int)) \<in> float" by (intro floatI[of 1 "-i"]) simp
lemma two_powr_minus_nat_float[simp]: "2 powr - (real (i::nat)) \<in> float" by (intro floatI[of 1 "-i"]) simp
lemma two_powr_numeral_float[simp]: "2 powr numeral i \<in> float" by (intro floatI[of 1 "numeral i"]) simp
lemma two_powr_neg_numeral_float[simp]: "2 powr neg_numeral i \<in> float" by (intro floatI[of 1 "neg_numeral i"]) simp
lemma two_pow_float[simp]: "2 ^ n \<in> float" by (intro floatI[of 1 "n"]) (simp add: powr_realpow)
lemma real_of_float_float[simp]: "real (f::float) \<in> float" by (cases f) simp

lemma plus_float[simp]: "r \<in> float \<Longrightarrow> p \<in> float \<Longrightarrow> r + p \<in> float"
  unfolding float_def
proof (safe, simp)
  fix e1 m1 e2 m2 :: int
  { fix e1 m1 e2 m2 :: int assume "e1 \<le> e2"
    then have "m1 * 2 powr e1 + m2 * 2 powr e2 = (m1 + m2 * 2 ^ nat (e2 - e1)) * 2 powr e1"
      by (simp add: powr_realpow[symmetric] powr_divide2[symmetric] field_simps)
    then have "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
      by blast }
  note * = this
  show "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
  proof (cases e1 e2 rule: linorder_le_cases)
    assume "e2 \<le> e1" from *[OF this, of m2 m1] show ?thesis by (simp add: ac_simps)
  qed (rule *)
qed

lemma uminus_float[simp]: "x \<in> float \<Longrightarrow> -x \<in> float"
  apply (auto simp: float_def)
  apply (rule_tac x="-x" in exI)
  apply (rule_tac x="xa" in exI)
  apply (simp add: field_simps)
  done

lemma times_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x * y \<in> float"
  apply (auto simp: float_def)
  apply (rule_tac x="x * xa" in exI)
  apply (rule_tac x="xb + xc" in exI)
  apply (simp add: powr_add)
  done

lemma minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x - y \<in> float"
  unfolding ab_diff_minus by (intro uminus_float plus_float)

lemma abs_float[simp]: "x \<in> float \<Longrightarrow> abs x \<in> float"
  by (cases x rule: linorder_cases[of 0]) auto

lemma sgn_of_float[simp]: "x \<in> float \<Longrightarrow> sgn x \<in> float"
  by (cases x rule: linorder_cases[of 0]) (auto intro!: uminus_float)

lemma div_power_2_float[simp]: "x \<in> float \<Longrightarrow> x / 2^d \<in> float"
  apply (auto simp add: float_def)
  apply (rule_tac x="x" in exI)
  apply (rule_tac x="xa - d" in exI)
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
  done

lemma div_power_2_int_float[simp]: "x \<in> float \<Longrightarrow> x / (2::int)^d \<in> float"
  apply (auto simp add: float_def)
  apply (rule_tac x="x" in exI)
  apply (rule_tac x="xa - d" in exI)
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
  done

lemma div_numeral_Bit0_float[simp]:
  assumes x: "x / numeral n \<in> float" shows "x / (numeral (Num.Bit0 n)) \<in> float"
proof -
  have "(x / numeral n) / 2^1 \<in> float"
    by (intro x div_power_2_float)
  also have "(x / numeral n) / 2^1 = x / (numeral (Num.Bit0 n))"
    by (induct n) auto
  finally show ?thesis .
qed

lemma div_neg_numeral_Bit0_float[simp]:
  assumes x: "x / numeral n \<in> float" shows "x / (neg_numeral (Num.Bit0 n)) \<in> float"
proof -
  have "- (x / numeral (Num.Bit0 n)) \<in> float" using x by simp
  also have "- (x / numeral (Num.Bit0 n)) = x / neg_numeral (Num.Bit0 n)"
    unfolding neg_numeral_def by (simp del: minus_numeral)
  finally show ?thesis .
qed

subsection {* Arithmetic operations on floating point numbers *}

instantiation float :: ring_1
begin

definition [simp]: "(0::float) = float_of 0"

definition [simp]: "(1::float) = float_of 1"

definition "(x + y::float) = float_of (real x + real y)"

lemma float_plus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> float_of x + float_of y = float_of (x + y)"
  by (simp add: plus_float_def)

definition "(-x::float) = float_of (- real x)"

lemma uminus_of_float[simp]: "x \<in> float \<Longrightarrow> - float_of x = float_of (- x)"
  by (simp add: uminus_float_def)

definition "(x - y::float) = float_of (real x - real y)"

lemma float_minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> float_of x - float_of y = float_of (x - y)"
  by (simp add: minus_float_def)

definition "(x * y::float) = float_of (real x * real y)"

lemma float_times_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> float_of x * float_of y = float_of (x * y)"
  by (simp add: times_float_def)

instance
proof
  fix a b c :: float
  show "0 + a = a"
    by (cases a rule: float_of_cases) simp
  show "1 * a = a"
    by (cases a rule: float_of_cases) simp
  show "a * 1 = a"
    by (cases a rule: float_of_cases) simp
  show "-a + a = 0"
    by (cases a rule: float_of_cases) simp
  show "a + b = b + a"
    by (cases a b rule: float_of_cases2) (simp add: ac_simps)
  show "a - b = a + -b"
    by (cases a b rule: float_of_cases2) (simp add: field_simps)
  show "a + b + c = a + (b + c)"
    by (cases a b c rule: float_of_cases3) (simp add: ac_simps)
  show "a * b * c = a * (b * c)"
    by (cases a b c rule: float_of_cases3) (simp add: ac_simps)
  show "(a + b) * c = a * c + b * c"
    by (cases a b c rule: float_of_cases3) (simp add: field_simps)
  show "a * (b + c) = a * b + a * c"
    by (cases a b c rule: float_of_cases3) (simp add: field_simps)
  show "0 \<noteq> (1::float)" by simp
qed
end

lemma real_of_float_uminus[simp]:
  fixes f g::float shows "real (- g) = - real g"
  by (simp add: uminus_float_def)

lemma real_of_float_plus[simp]:
  fixes f g::float shows "real (f + g) = real f + real g"
  by (simp add: plus_float_def)

lemma real_of_float_minus[simp]:
  fixes f g::float shows "real (f - g) = real f - real g"
  by (simp add: minus_float_def)

lemma real_of_float_times[simp]:
  fixes f g::float shows "real (f * g) = real f * real g"
  by (simp add: times_float_def)

lemma real_of_float_zero[simp]: "real (0::float) = 0" by simp
lemma real_of_float_one[simp]: "real (1::float) = 1" by simp

lemma real_of_float_power[simp]: fixes f::float shows "real (f^n) = real f^n"
  by (induct n) simp_all

instantiation float :: linorder
begin

definition "x \<le> (y::float) \<longleftrightarrow> real x \<le> real y"

lemma float_le_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> float_of x \<le> float_of y \<longleftrightarrow> x \<le> y"
  by (simp add: less_eq_float_def)

definition "x < (y::float) \<longleftrightarrow> real x < real y"

lemma float_less_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> float_of x < float_of y \<longleftrightarrow> x < y"
  by (simp add: less_float_def)

instance
proof
  fix a b c :: float
  show "a \<le> a"
    by (cases a rule: float_of_cases) simp
  show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
    by (cases a b rule: float_of_cases2) auto
  show "a \<le> b \<or> b \<le> a"
    by (cases a b rule: float_of_cases2) auto
  { assume "a \<le> b" "b \<le> a" then show "a = b"
    by (cases a b rule: float_of_cases2) auto }
  { assume "a \<le> b" "b \<le> c" then show "a \<le> c"
    by (cases a b c rule: float_of_cases3) auto }
qed
end

lemma real_of_float_min: fixes a b::float shows "real (min a b) = min (real a) (real b)"
  by (simp add: min_def less_eq_float_def)

lemma real_of_float_max: fixes a b::float shows "real (max a b) = max (real a) (real b)"
  by (simp add: max_def less_eq_float_def)

instantiation float :: linordered_ring
begin

definition "(abs x :: float) = float_of (abs (real x))"

lemma float_abs[simp]: "x \<in> float \<Longrightarrow> abs (float_of x) = float_of (abs x)"
  by (simp add: abs_float_def)

instance
proof
  fix a b c :: float
  show "\<bar>a\<bar> = (if a < 0 then - a else a)"
    by (cases a rule: float_of_cases) simp
  assume "a \<le> b"
  then show "c + a \<le> c + b"
    by (cases a b c rule: float_of_cases3) simp
  assume "0 \<le> c"
  with `a \<le> b` show "c * a \<le> c * b"
    by (cases a b c rule: float_of_cases3) (auto intro: mult_left_mono)
  from `0 \<le> c` `a \<le> b` show "a * c \<le> b * c"
    by (cases a b c rule: float_of_cases3) (auto intro: mult_right_mono)
qed
end

lemma real_of_abs_float[simp]: fixes f::float shows "real (abs f) = abs (real f)"
  unfolding abs_float_def by simp

instance float :: dense_linorder
proof
  fix a b :: float
  show "\<exists>c. a < c"
    apply (intro exI[of _ "a + 1"])
    apply (cases a rule: float_of_cases)
    apply simp
    done
  show "\<exists>c. c < a"
    apply (intro exI[of _ "a - 1"])
    apply (cases a rule: float_of_cases)
    apply simp
    done
  assume "a < b"
  then show "\<exists>c. a < c \<and> c < b"
    apply (intro exI[of _ "(b + a) * float_of (1/2)"])
    apply (cases a b rule: float_of_cases2)
    apply simp
    done
qed

instantiation float :: linordered_idom
begin

definition "sgn x = float_of (sgn (real x))"

lemma sgn_float[simp]: "x \<in> float \<Longrightarrow> sgn (float_of x) = float_of (sgn x)"
  by (simp add: sgn_float_def)

instance
proof
  fix a b c :: float
  show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
    by (cases a rule: float_of_cases) simp
  show "a * b = b * a"
    by (cases a b rule: float_of_cases2) (simp add: field_simps)
  show "1 * a = a" "(a + b) * c = a * c + b * c"
    by (simp_all add: field_simps del: one_float_def)
  assume "a < b" "0 < c" then show "c * a < c * b"
    by (cases a b c rule: float_of_cases3) (simp add: field_simps)
qed
end

definition Float :: "int \<Rightarrow> int \<Rightarrow> float" where
  [simp, code del]: "Float m e = float_of (m * 2 powr e)"

lemma real_of_float_Float[code]: "real_of_float (Float m e) =
  (if e \<ge> 0 then m * 2 ^ nat e else m * inverse (2 ^ nat (- e)))"
by (auto simp add: powr_realpow[symmetric] powr_minus real_of_float_def[symmetric])

code_datatype Float

lemma real_Float: "real (Float m e) = m * 2 powr e" by simp

definition normfloat :: "float \<Rightarrow> float" where
  [simp]: "normfloat x = x"

lemma compute_normfloat[code]: "normfloat (Float m e) =
  (if m mod 2 = 0 \<and> m \<noteq> 0 then normfloat (Float (m div 2) (e + 1))
                           else if m = 0 then 0 else Float m e)"
  by (simp del: real_of_int_add split: prod.split)
     (auto simp add: powr_add zmod_eq_0_iff)

lemma compute_zero[code_unfold, code]: "0 = Float 0 0"
  by simp

lemma compute_one[code_unfold, code]: "1 = Float 1 0"
  by simp

instance float :: numeral ..

lemma float_of_numeral[simp]: "numeral k = float_of (numeral k)"
  by (induct k)
     (simp_all only: numeral.simps one_float_def float_plus_float numeral_float one_float plus_float)

lemma float_of_neg_numeral[simp]: "neg_numeral k = float_of (neg_numeral k)"
  by (simp add: minus_numeral[symmetric] del: minus_numeral)

lemma
  shows float_numeral[simp]: "real (numeral x :: float) = numeral x"
    and float_neg_numeral[simp]: "real (neg_numeral x :: float) = neg_numeral x"
  by simp_all

subsection {* Represent floats as unique mantissa and exponent *}


lemma int_induct_abs[case_names less]:
  fixes j :: int
  assumes H: "\<And>n. (\<And>i. \<bar>i\<bar> < \<bar>n\<bar> \<Longrightarrow> P i) \<Longrightarrow> P n"
  shows "P j"
proof (induct "nat \<bar>j\<bar>" arbitrary: j rule: less_induct)
  case less show ?case by (rule H[OF less]) simp
qed

lemma int_cancel_factors:
  fixes n :: int assumes "1 < r" shows "n = 0 \<or> (\<exists>k i. n = k * r ^ i \<and> \<not> r dvd k)"
proof (induct n rule: int_induct_abs)
  case (less n)
  { fix m assume n: "n \<noteq> 0" "n = m * r"
    then have "\<bar>m \<bar> < \<bar>n\<bar>"
      by (metis abs_dvd_iff abs_ge_self assms comm_semiring_1_class.normalizing_semiring_rules(7)
                dvd_imp_le_int dvd_refl dvd_triv_right linorder_neq_iff linorder_not_le
                mult_eq_0_iff zdvd_mult_cancel1)
    from less[OF this] n have "\<exists>k i. n = k * r ^ Suc i \<and> \<not> r dvd k" by auto }
  then show ?case
    by (metis comm_semiring_1_class.normalizing_semiring_rules(12,7) dvdE power_0)
qed

lemma mult_powr_eq_mult_powr_iff_asym:
  fixes m1 m2 e1 e2 :: int
  assumes m1: "\<not> 2 dvd m1" and "e1 \<le> e2"
  shows "m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
proof
  have "m1 \<noteq> 0" using m1 unfolding dvd_def by auto
  assume eq: "m1 * 2 powr e1 = m2 * 2 powr e2"
  with `e1 \<le> e2` have "m1 = m2 * 2 powr nat (e2 - e1)"
    by (simp add: powr_divide2[symmetric] field_simps)
  also have "\<dots> = m2 * 2^nat (e2 - e1)"
    by (simp add: powr_realpow)
  finally have m1_eq: "m1 = m2 * 2^nat (e2 - e1)"
    unfolding real_of_int_inject .
  with m1 have "m1 = m2"
    by (cases "nat (e2 - e1)") (auto simp add: dvd_def)
  then show "m1 = m2 \<and> e1 = e2"
    using eq `m1 \<noteq> 0` by (simp add: powr_inj)
qed simp

lemma mult_powr_eq_mult_powr_iff:
  fixes m1 m2 e1 e2 :: int
  shows "\<not> 2 dvd m1 \<Longrightarrow> \<not> 2 dvd m2 \<Longrightarrow> m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
  using mult_powr_eq_mult_powr_iff_asym[of m1 e1 e2 m2]
  using mult_powr_eq_mult_powr_iff_asym[of m2 e2 e1 m1]
  by (cases e1 e2 rule: linorder_le_cases) auto

lemma floatE_normed:
  assumes x: "x \<in> float"
  obtains (zero) "x = 0"
   | (powr) m e :: int where "x = m * 2 powr e" "\<not> 2 dvd m" "x \<noteq> 0"
proof atomize_elim
  { assume "x \<noteq> 0"
    from x obtain m e :: int where x: "x = m * 2 powr e" by (auto simp: float_def)
    with `x \<noteq> 0` int_cancel_factors[of 2 m] obtain k i where "m = k * 2 ^ i" "\<not> 2 dvd k"
      by auto
    with `\<not> 2 dvd k` x have "\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m"
      by (rule_tac exI[of _ "k"], rule_tac exI[of _ "e + int i"])
         (simp add: powr_add powr_realpow) }
  then show "x = 0 \<or> (\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m \<and> x \<noteq> 0)"
    by blast
qed

lemma float_normed_cases:
  fixes f :: float
  obtains (zero) "f = 0"
   | (powr) m e :: int where "real f = m * 2 powr e" "\<not> 2 dvd m" "f \<noteq> 0"
proof (atomize_elim, induct f)
  case (float_of y) then show ?case
    by (cases rule: floatE_normed) auto
qed

definition mantissa :: "float \<Rightarrow> int" where
  "mantissa f = fst (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"

definition exponent :: "float \<Rightarrow> int" where
  "exponent f = snd (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"

lemma 
  shows exponent_0[simp]: "exponent (float_of 0) = 0" (is ?E)
    and mantissa_0[simp]: "mantissa (float_of 0) = 0" (is ?M)
proof -
  have "\<And>p::int \<times> int. fst p = 0 \<and> snd p = 0 \<longleftrightarrow> p = (0, 0)" by auto
  then show ?E ?M
    by (auto simp add: mantissa_def exponent_def)
qed

lemma
  shows mantissa_exponent: "real f = mantissa f * 2 powr exponent f" (is ?E)
    and mantissa_not_dvd: "f \<noteq> (float_of 0) \<Longrightarrow> \<not> 2 dvd mantissa f" (is "_ \<Longrightarrow> ?D")
proof cases
  assume [simp]: "f \<noteq> (float_of 0)"
  have "f = mantissa f * 2 powr exponent f \<and> \<not> 2 dvd mantissa f"
  proof (cases f rule: float_normed_cases)
    case (powr m e)
    then have "\<exists>p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
     \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p)"
      by auto
    then show ?thesis
      unfolding exponent_def mantissa_def
      by (rule someI2_ex) simp
  qed simp
  then show ?E ?D by auto
qed simp

lemma mantissa_noteq_0: "f \<noteq> float_of 0 \<Longrightarrow> mantissa f \<noteq> 0"
  using mantissa_not_dvd[of f] by auto

lemma Float_mantissa_exponent: "Float (mantissa f) (exponent f) = f"
  unfolding real_of_float_eq[symmetric] mantissa_exponent[of f] by simp

lemma Float_cases[case_names Float, cases type: float]:
  fixes f :: float
  obtains (Float) m e :: int where "f = Float m e"
  using Float_mantissa_exponent[symmetric]
  by (atomize_elim) auto

lemma 
  fixes m e :: int
  defines "f \<equiv> float_of (m * 2 powr e)"
  assumes dvd: "\<not> 2 dvd m"
  shows mantissa_float: "mantissa f = m" (is "?M")
    and exponent_float: "m \<noteq> 0 \<Longrightarrow> exponent f = e" (is "_ \<Longrightarrow> ?E")
proof cases
  assume "m = 0" with dvd show "mantissa f = m" by auto
next
  assume "m \<noteq> 0"
  then have f_not_0: "f \<noteq> float_of 0" by (simp add: f_def)
  from mantissa_exponent[of f]
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
    by (auto simp add: f_def)
  then show "?M" "?E"
    using mantissa_not_dvd[OF f_not_0] dvd
    by (auto simp: mult_powr_eq_mult_powr_iff)
qed

lemma denormalize_shift:
  assumes f_def: "f \<equiv> Float m e" and not_0: "f \<noteq> float_of 0"
  obtains i where "m = mantissa f * 2 ^ i" "e = exponent f - i"
proof
  from mantissa_exponent[of f] f_def
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
    by simp
  then have eq: "m = mantissa f * 2 powr (exponent f - e)"
    by (simp add: powr_divide2[symmetric] field_simps)
  moreover
  have "e \<le> exponent f"
  proof (rule ccontr)
    assume "\<not> e \<le> exponent f"
    then have pos: "exponent f < e" by simp
    then have "2 powr (exponent f - e) = 2 powr - real (e - exponent f)"
      by simp
    also have "\<dots> = 1 / 2^nat (e - exponent f)"
      using pos by (simp add: powr_realpow[symmetric] powr_divide2[symmetric])
    finally have "m * 2^nat (e - exponent f) = real (mantissa f)"
      using eq by simp
    then have "mantissa f = m * 2^nat (e - exponent f)"
      unfolding real_of_int_inject by simp
    with `exponent f < e` have "2 dvd mantissa f"
      apply (intro dvdI[where k="m * 2^(nat (e-exponent f)) div 2"])
      apply (cases "nat (e - exponent f)")
      apply auto
      done
    then show False using mantissa_not_dvd[OF not_0] by simp
  qed
  ultimately have "real m = mantissa f * 2^nat (exponent f - e)"
    by (simp add: powr_realpow[symmetric])
  with `e \<le> exponent f`
  show "m = mantissa f * 2 ^ nat (exponent f - e)" "e = exponent f - nat (exponent f - e)"
    unfolding real_of_int_inject by auto
qed

subsection {* Compute arithmetic operations *}

lemma compute_float_numeral[code_abbrev]: "Float (numeral k) 0 = numeral k"
  by simp

lemma compute_float_neg_numeral[code_abbrev]: "Float (neg_numeral k) 0 = neg_numeral k"
  by simp

lemma compute_float_uminus[code]: "- Float m1 e1 = Float (- m1) e1"
  by simp

lemma compute_float_times[code]: "Float m1 e1 * Float m2 e2 = Float (m1 * m2) (e1 + e2)"
  by (simp add: field_simps powr_add)

lemma compute_float_plus[code]: "Float m1 e1 + Float m2 e2 =
  (if e1 \<le> e2 then Float (m1 + m2 * 2^nat (e2 - e1)) e1
              else Float (m2 + m1 * 2^nat (e1 - e2)) e2)"
  by (simp add: field_simps)
     (simp add: powr_realpow[symmetric] powr_divide2[symmetric])

lemma compute_float_minus[code]: fixes f g::float shows "f - g = f + (-g)" by simp

lemma compute_float_sgn[code]: "sgn (Float m1 e1) = (if 0 < m1 then 1 else if m1 < 0 then -1 else 0)"
  by (simp add: sgn_times)

definition is_float_pos :: "float \<Rightarrow> bool" where
  "is_float_pos f \<longleftrightarrow> 0 < f"

lemma compute_is_float_pos[code]: "is_float_pos (Float m e) \<longleftrightarrow> 0 < m"
  by (auto simp add: is_float_pos_def zero_less_mult_iff) (simp add: not_le[symmetric])

lemma compute_float_less[code]: "a < b \<longleftrightarrow> is_float_pos (b - a)"
  by (simp add: is_float_pos_def field_simps del: zero_float_def)

definition is_float_nonneg :: "float \<Rightarrow> bool" where
  "is_float_nonneg f \<longleftrightarrow> 0 \<le> f"

lemma compute_is_float_nonneg[code]: "is_float_nonneg (Float m e) \<longleftrightarrow> 0 \<le> m"
  by (auto simp add: is_float_nonneg_def zero_le_mult_iff) (simp add: not_less[symmetric])

lemma compute_float_le[code]: "a \<le> b \<longleftrightarrow> is_float_nonneg (b - a)"
  by (simp add: is_float_nonneg_def field_simps del: zero_float_def)

definition is_float_zero :: "float \<Rightarrow> bool" where
  "is_float_zero f \<longleftrightarrow> 0 = f"

lemma compute_is_float_zero[code]: "is_float_zero (Float m e) \<longleftrightarrow> 0 = m"
  by (auto simp add: is_float_zero_def)

lemma compute_float_abs[code]: "abs (Float m e) = Float (abs m) e" by (simp add: abs_mult)

instantiation float :: equal
begin

definition "equal_float (f1 :: float) f2 \<longleftrightarrow> is_float_zero (f1 - f2)"

instance proof qed (auto simp: equal_float_def is_float_zero_def simp del: zero_float_def)
end

subsection {* Rounding Real numbers *}

definition round_down :: "int \<Rightarrow> real \<Rightarrow> real" where
  "round_down prec x = floor (x * 2 powr prec) * 2 powr -prec"

definition round_up :: "int \<Rightarrow> real \<Rightarrow> real" where
  "round_up prec x = ceiling (x * 2 powr prec) * 2 powr -prec"

lemma round_down_float[simp]: "round_down prec x \<in> float"
  unfolding round_down_def
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)

lemma round_up_float[simp]: "round_up prec x \<in> float"
  unfolding round_up_def
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)

lemma round_up: "x \<le> round_up prec x"
  by (simp add: powr_minus_divide le_divide_eq round_up_def)

lemma round_down: "round_down prec x \<le> x"
  by (simp add: powr_minus_divide divide_le_eq round_down_def)

lemma round_up_0[simp]: "round_up p 0 = 0"
  unfolding round_up_def by simp

lemma round_down_0[simp]: "round_down p 0 = 0"
  unfolding round_down_def by simp

lemma round_up_diff_round_down:
  "round_up prec x - round_down prec x \<le> 2 powr -prec"
proof -
  have "round_up prec x - round_down prec x =
    (ceiling (x * 2 powr prec) - floor (x * 2 powr prec)) * 2 powr -prec"
    by (simp add: round_up_def round_down_def field_simps)
  also have "\<dots> \<le> 1 * 2 powr -prec"
    by (rule mult_mono)
       (auto simp del: real_of_int_diff
             simp: real_of_int_diff[symmetric] real_of_int_le_one_cancel_iff ceiling_diff_floor_le_1)
  finally show ?thesis by simp
qed

lemma round_down_shift: "round_down p (x * 2 powr k) = 2 powr k * round_down (p + k) x"
  unfolding round_down_def
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
    (simp add: powr_add[symmetric])

lemma round_up_shift: "round_up p (x * 2 powr k) = 2 powr k * round_up (p + k) x"
  unfolding round_up_def
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
    (simp add: powr_add[symmetric])

subsection {* Rounding Floats *}

definition float_up :: "int \<Rightarrow> float \<Rightarrow> float" where
  "float_up prec x = float_of (round_up prec (real x))"

lemma float_up_float: 
  "x \<in> float \<Longrightarrow> float_up prec (float_of x) = float_of (round_up prec x)"
  unfolding float_up_def by simp

lemma float_up_correct:
  shows "real (float_up e f) - real f \<in> {0..2 powr -e}"
unfolding atLeastAtMost_iff
proof
  have "round_up e f - f \<le> round_up e f - round_down e f" using round_down by simp
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
  finally show "real (float_up e f) - real f \<le> 2 powr real (- e)"
    by (simp add: float_up_def)
qed (simp add: algebra_simps float_up_def round_up)

definition float_down :: "int \<Rightarrow> float \<Rightarrow> float" where
  "float_down prec x = float_of (round_down prec (real x))"

lemma float_down_float: 
  "x \<in> float \<Longrightarrow> float_down prec (float_of x) = float_of (round_down prec x)"
  unfolding float_down_def by simp

lemma float_down_correct:
  shows "real f - real (float_down e f) \<in> {0..2 powr -e}"
unfolding atLeastAtMost_iff
proof
  have "f - round_down e f \<le> round_up e f - round_down e f" using round_up by simp
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
  finally show "real f - real (float_down e f) \<le> 2 powr real (- e)"
    by (simp add: float_down_def)
qed (simp add: algebra_simps float_down_def round_down)

lemma round_down_Float_id:
  assumes "p + e \<ge> 0"
  shows "round_down p (Float m e) = Float m e"
proof -
  from assms have r: "real e + real p = real (nat (e + p))" by simp
  have r: "\<lfloor>real (Float m e) * 2 powr real p\<rfloor> = real (Float m e) * 2 powr real p"
    by (auto intro: exI[where x="m*2^nat (e+p)"]
      simp add: ac_simps powr_add[symmetric] r powr_realpow)
  show ?thesis using assms
    unfolding round_down_def floor_divide_eq_div r
    by (simp add: ac_simps powr_add[symmetric])
qed

lemma compute_float_down[code]:
  "float_down p (Float m e) =
    (if p + e < 0 then Float (m div 2^nat (-(p + e))) (-p) else Float m e)"
proof cases
  assume "p + e < 0"
  hence "real ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))"
    using powr_realpow[of 2 "nat (-(p + e))"] by simp
  also have "... = 1 / 2 powr p / 2 powr e"
  unfolding powr_minus_divide real_of_int_minus by (simp add: powr_add)
  finally show ?thesis
    unfolding float_down_def round_down_def floor_divide_eq_div[symmetric]
    using `p + e < 0` by (simp add: ac_simps)
next
  assume "\<not> p + e < 0" with round_down_Float_id show ?thesis by (simp add: float_down_def)
qed

lemma ceil_divide_floor_conv:
assumes "b \<noteq> 0"
shows "\<lceil>real a / real b\<rceil> = (if b dvd a then a div b else \<lfloor>real a / real b\<rfloor> + 1)"
proof cases
  assume "\<not> b dvd a"
  hence "a mod b \<noteq> 0" by auto
  hence ne: "real (a mod b) / real b \<noteq> 0" using `b \<noteq> 0` by auto
  have "\<lceil>real a / real b\<rceil> = \<lfloor>real a / real b\<rfloor> + 1"
  apply (rule ceiling_eq) apply (auto simp: floor_divide_eq_div[symmetric])
  proof -
    have "real \<lfloor>real a / real b\<rfloor> \<le> real a / real b" by simp
    moreover have "real \<lfloor>real a / real b\<rfloor> \<noteq> real a / real b"
    apply (subst (2) real_of_int_div_aux) unfolding floor_divide_eq_div using ne `b \<noteq> 0` by auto
    ultimately show "real \<lfloor>real a / real b\<rfloor> < real a / real b" by arith
  qed
  thus ?thesis using `\<not> b dvd a` by simp
qed (simp add: ceiling_def real_of_int_minus[symmetric] divide_minus_left[symmetric]
  floor_divide_eq_div dvd_neg_div del: divide_minus_left real_of_int_minus)

lemma round_up_Float_id:
  assumes "p + e \<ge> 0"
  shows "round_up p (Float m e) = Float m e"
proof -
  from assms have r1: "real e + real p = real (nat (e + p))" by simp
  have r: "\<lceil>real (Float m e) * 2 powr real p\<rceil> = real (Float m e) * 2 powr real p"
    by (auto simp add: ac_simps powr_add[symmetric] r1 powr_realpow
      intro: exI[where x="m*2^nat (e+p)"])
  show ?thesis using assms
    unfolding float_up_def round_up_def floor_divide_eq_div Let_def r
    by (simp add: ac_simps powr_add[symmetric])
qed

lemma compute_float_up[code]:
  "float_up p (Float m e) =
    (let P = 2^nat (-(p + e)); r = m mod P in
      if p + e < 0 then Float (m div P + (if r = 0 then 0 else 1)) (-p) else Float m e)"
proof cases
  assume "p + e < 0"
  hence "real ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))"
    using powr_realpow[of 2 "nat (-(p + e))"] by simp
  also have "... = 1 / 2 powr p / 2 powr e"
  unfolding powr_minus_divide real_of_int_minus by (simp add: powr_add)
  finally have twopow_rewrite:
    "real ((2::int) ^ nat (- (p + e))) = 1 / 2 powr real p / 2 powr real e" .
  with `p + e < 0` have powr_rewrite:
    "2 powr real e * 2 powr real p = 1 / real ((2::int) ^ nat (- (p + e)))"
    unfolding powr_divide2 by simp
  show ?thesis
  proof cases
    assume "2^nat (-(p + e)) dvd m"
    with `p + e < 0` twopow_rewrite show ?thesis
      by (auto simp: ac_simps float_up_def round_up_def floor_divide_eq_div dvd_eq_mod_eq_0)
  next
    assume ndvd: "\<not> 2 ^ nat (- (p + e)) dvd m"
    have one_div: "real m * (1 / real ((2::int) ^ nat (- (p + e)))) =
      real m / real ((2::int) ^ nat (- (p + e)))"
      by (simp add: field_simps)
    have "real \<lceil>real m * (2 powr real e * 2 powr real p)\<rceil> =
      real \<lfloor>real m * (2 powr real e * 2 powr real p)\<rfloor> + 1"
      using ndvd unfolding powr_rewrite one_div
      by (subst ceil_divide_floor_conv) (auto simp: field_simps)
    thus ?thesis using `p + e < 0` twopow_rewrite
      by (auto simp: ac_simps Let_def float_up_def round_up_def floor_divide_eq_div[symmetric])
  qed
next
  assume "\<not> p + e < 0" with round_up_Float_id show ?thesis by (simp add: float_up_def)
qed

lemmas real_of_ints =
  real_of_int_zero
  real_of_one
  real_of_int_add
  real_of_int_minus
  real_of_int_diff
  real_of_int_mult
  real_of_int_power
  real_numeral
lemmas real_of_nats =
  real_of_nat_zero
  real_of_nat_one
  real_of_nat_1
  real_of_nat_add
  real_of_nat_mult
  real_of_nat_power

lemmas int_of_reals = real_of_ints[symmetric]
lemmas nat_of_reals = real_of_nats[symmetric]

lemma two_real_int: "(2::real) = real (2::int)" by simp
lemma two_real_nat: "(2::real) = real (2::nat)" by simp

lemma mult_cong: "a = c ==> b = d ==> a*b = c*d" by simp

subsection {* Compute bitlen of integers *}

definition bitlen::"int => int"
where "bitlen a = (if a > 0 then \<lfloor>log 2 a\<rfloor> + 1 else 0)"

lemma bitlen_nonneg: "0 \<le> bitlen x"
proof -
  {
    assume "0 > x"
    have "-1 = log 2 (inverse 2)" by (subst log_inverse) simp_all
    also have "... < log 2 (-x)" using `0 > x` by auto
    finally have "-1 < log 2 (-x)" .
  } thus "0 \<le> bitlen x" unfolding bitlen_def by (auto intro!: add_nonneg_nonneg)
qed

lemma bitlen_bounds:
  assumes "x > 0"
  shows "2 ^ nat (bitlen x - 1) \<le> x \<and> x < 2 ^ nat (bitlen x)"
proof
  have "(2::real) ^ nat \<lfloor>log 2 (real x)\<rfloor> = 2 powr real (floor (log 2 (real x)))"
    using powr_realpow[symmetric, of 2 "nat \<lfloor>log 2 (real x)\<rfloor>"] `x > 0`
    using real_nat_eq_real[of "floor (log 2 (real x))"]
    by simp
  also have "... \<le> 2 powr log 2 (real x)"
    by simp
  also have "... = real x"
    using `0 < x` by simp
  finally have "2 ^ nat \<lfloor>log 2 (real x)\<rfloor> \<le> real x" by simp
  thus "2 ^ nat (bitlen x - 1) \<le> x" using `x > 0`
    by (simp add: bitlen_def)
next
  have "x \<le> 2 powr (log 2 x)" using `x > 0` by simp
  also have "... < 2 ^ nat (\<lfloor>log 2 (real x)\<rfloor> + 1)"
    apply (simp add: powr_realpow[symmetric])
    using `x > 0` by simp
  finally show "x < 2 ^ nat (bitlen x)" using `x > 0`
    by (simp add: bitlen_def ac_simps int_of_reals del: real_of_ints)
qed

lemma bitlen_pow2[simp]:
  assumes "b > 0"
  shows "bitlen (b * 2 ^ c) = bitlen b + c"
proof -
  from assms have "b * 2 ^ c > 0" by (auto intro: mult_pos_pos)
  thus ?thesis
    using floor_add[of "log 2 b" c] assms
    by (auto simp add: log_mult log_nat_power bitlen_def)
qed

lemma bitlen_Float:
fixes m e
defines "f \<equiv> Float m e"
shows "bitlen (\<bar>mantissa f\<bar>) + exponent f = (if m = 0 then 0 else bitlen \<bar>m\<bar> + e)"
proof cases
  assume "m \<noteq> 0" hence "f \<noteq> float_of 0" by (simp add: f_def) hence "mantissa f \<noteq> 0"
    by (simp add: mantissa_noteq_0)
  moreover
  from f_def[THEN denormalize_shift, OF `f \<noteq> float_of 0`] guess i .
  ultimately show ?thesis by (simp add: abs_mult)
qed (simp add: f_def bitlen_def)

lemma compute_bitlen[code]:
  shows "bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)"
proof -
  { assume "2 \<le> x"
    then have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 (x - x mod 2)\<rfloor>"
      by (simp add: log_mult zmod_zdiv_equality')
    also have "\<dots> = \<lfloor>log 2 (real x)\<rfloor>"
    proof cases
      assume "x mod 2 = 0" then show ?thesis by simp
    next
      def n \<equiv> "\<lfloor>log 2 (real x)\<rfloor>"
      then have "0 \<le> n"
        using `2 \<le> x` by simp
      assume "x mod 2 \<noteq> 0"
      with `2 \<le> x` have "x mod 2 = 1" "\<not> 2 dvd x" by (auto simp add: dvd_eq_mod_eq_0)
      with `2 \<le> x` have "x \<noteq> 2^nat n" by (cases "nat n") auto
      moreover
      { have "real (2^nat n :: int) = 2 powr (nat n)"
          by (simp add: powr_realpow)
        also have "\<dots> \<le> 2 powr (log 2 x)"
          using `2 \<le> x` by (simp add: n_def del: powr_log_cancel)
        finally have "2^nat n \<le> x" using `2 \<le> x` by simp }
      ultimately have "2^nat n \<le> x - 1" by simp
      then have "2^nat n \<le> real (x - 1)"
        unfolding real_of_int_le_iff[symmetric] by simp
      { have "n = \<lfloor>log 2 (2^nat n)\<rfloor>"
          using `0 \<le> n` by (simp add: log_nat_power)
        also have "\<dots> \<le> \<lfloor>log 2 (x - 1)\<rfloor>"
          using `2^nat n \<le> real (x - 1)` `0 \<le> n` `2 \<le> x` by (auto intro: floor_mono)
        finally have "n \<le> \<lfloor>log 2 (x - 1)\<rfloor>" . }
      moreover have "\<lfloor>log 2 (x - 1)\<rfloor> \<le> n"
        using `2 \<le> x` by (auto simp add: n_def intro!: floor_mono)
      ultimately show "\<lfloor>log 2 (x - x mod 2)\<rfloor> = \<lfloor>log 2 x\<rfloor>"
        unfolding n_def `x mod 2 = 1` by auto
    qed
    finally have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 x\<rfloor>" . }
  moreover
  { assume "x < 2" "0 < x"
    then have "x = 1" by simp
    then have "\<lfloor>log 2 (real x)\<rfloor> = 0" by simp }
  ultimately show ?thesis
    unfolding bitlen_def
    by (auto simp: pos_imp_zdiv_pos_iff not_le)
qed

lemma float_gt1_scale: assumes "1 \<le> Float m e"
  shows "0 \<le> e + (bitlen m - 1)"
proof -
  have "0 < Float m e" using assms by auto
  hence "0 < m" using powr_gt_zero[of 2 e]
    by (auto simp: less_float_def less_eq_float_def zero_less_mult_iff)
  hence "m \<noteq> 0" by auto
  show ?thesis
  proof (cases "0 \<le> e")
    case True thus ?thesis using `0 < m`  by (simp add: bitlen_def)
  next
    have "(1::int) < 2" by simp
    case False let ?S = "2^(nat (-e))"
    have "inverse (2 ^ nat (- e)) = 2 powr e" using assms False powr_realpow[of 2 "nat (-e)"]
      by (auto simp: powr_minus field_simps inverse_eq_divide)
    hence "1 \<le> real m * inverse ?S" using assms False powr_realpow[of 2 "nat (-e)"]
      by (auto simp: powr_minus)
    hence "1 * ?S \<le> real m * inverse ?S * ?S" by (rule mult_right_mono, auto)
    hence "?S \<le> real m" unfolding mult_assoc by auto
    hence "?S \<le> m" unfolding real_of_int_le_iff[symmetric] by auto
    from this bitlen_bounds[OF `0 < m`, THEN conjunct2]
    have "nat (-e) < (nat (bitlen m))" unfolding power_strict_increasing_iff[OF `1 < 2`, symmetric] by (rule order_le_less_trans)
    hence "-e < bitlen m" using False by auto
    thus ?thesis by auto
  qed
qed

lemma bitlen_div: assumes "0 < m" shows "1 \<le> real m / 2^nat (bitlen m - 1)" and "real m / 2^nat (bitlen m - 1) < 2"
proof -
  let ?B = "2^nat(bitlen m - 1)"

  have "?B \<le> m" using bitlen_bounds[OF `0 <m`] ..
  hence "1 * ?B \<le> real m" unfolding real_of_int_le_iff[symmetric] by auto
  thus "1 \<le> real m / ?B" by auto

  have "m \<noteq> 0" using assms by auto
  have "0 \<le> bitlen m - 1" using `0 < m` by (auto simp: bitlen_def)

  have "m < 2^nat(bitlen m)" using bitlen_bounds[OF `0 <m`] ..
  also have "\<dots> = 2^nat(bitlen m - 1 + 1)" using `0 < m` by (auto simp: bitlen_def)
  also have "\<dots> = ?B * 2" unfolding nat_add_distrib[OF `0 \<le> bitlen m - 1` zero_le_one] by auto
  finally have "real m < 2 * ?B" unfolding real_of_int_less_iff[symmetric] by auto
  hence "real m / ?B < 2 * ?B / ?B" by (rule divide_strict_right_mono, auto)
  thus "real m / ?B < 2" by auto
qed

subsection {* Approximation of positive rationals *}

lemma zdiv_zmult_twopow_eq: fixes a b::int shows "a div b div (2 ^ n) = a div (b * 2 ^ n)"
by (simp add: zdiv_zmult2_eq)

lemma div_mult_twopow_eq: fixes a b::nat shows "a div ((2::nat) ^ n) div b = a div (b * 2 ^ n)"
  by (cases "b=0") (simp_all add: div_mult2_eq[symmetric] ac_simps)

lemma real_div_nat_eq_floor_of_divide:
  fixes a b::nat
  shows "a div b = real (floor (a/b))"
by (metis floor_divide_eq_div real_of_int_of_nat_eq zdiv_int)

definition "rat_precision prec x y = int prec - (bitlen x - bitlen y)"

definition lapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float" where
  "lapprox_posrat prec x y = float_of (round_down (rat_precision prec x y) (x / y))"

lemma compute_lapprox_posrat[code]:
  fixes prec x y 
  shows "lapprox_posrat prec x y = 
   (let 
       l = rat_precision prec x y;
       d = if 0 \<le> l then x * 2^nat l div y else x div 2^nat (- l) div y
    in normfloat (Float d (- l)))"
    unfolding lapprox_posrat_def div_mult_twopow_eq
    by (simp add: round_down_def powr_int real_div_nat_eq_floor_of_divide
                  field_simps Let_def
             del: two_powr_minus_int_float)

definition rapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float" where
  "rapprox_posrat prec x y = float_of (round_up (rat_precision prec x y) (x / y))"

(* TODO: optimize using zmod_zmult2_eq, pdivmod ? *)
lemma compute_rapprox_posrat[code]:
  fixes prec x y
  defines "l \<equiv> rat_precision prec x y"
  shows "rapprox_posrat prec x y = (let
     l = l ;
     X = if 0 \<le> l then (x * 2^nat l, y) else (x, y * 2^nat(-l)) ;
     d = fst X div snd X ;
     m = fst X mod snd X
   in normfloat (Float (d + (if m = 0 \<or> y = 0 then 0 else 1)) (- l)))"
proof (cases "y = 0")
  assume "y = 0" thus ?thesis by (simp add: rapprox_posrat_def Let_def)
next
  assume "y \<noteq> 0"
  show ?thesis
  proof (cases "0 \<le> l")
    assume "0 \<le> l"
    def x' == "x * 2 ^ nat l"
    have "int x * 2 ^ nat l = x'" by (simp add: x'_def int_mult int_power)
    moreover have "real x * 2 powr real l = real x'"
      by (simp add: powr_realpow[symmetric] `0 \<le> l` x'_def)
    ultimately show ?thesis
      unfolding rapprox_posrat_def round_up_def l_def[symmetric]
      using ceil_divide_floor_conv[of y x'] powr_realpow[of 2 "nat l"] `0 \<le> l` `y \<noteq> 0`
      by (simp add: Let_def floor_divide_eq_div[symmetric] dvd_eq_mod_eq_0 int_of_reals
               del: real_of_ints)
   next
    assume "\<not> 0 \<le> l"
    def y' == "y * 2 ^ nat (- l)"
    from `y \<noteq> 0` have "y' \<noteq> 0" by (simp add: y'_def)
    have "int y * 2 ^ nat (- l) = y'" by (simp add: y'_def int_mult int_power)
    moreover have "real x * real (2::int) powr real l / real y = x / real y'"
      using `\<not> 0 \<le> l`
      by (simp add: powr_realpow[symmetric] powr_minus y'_def field_simps inverse_eq_divide)
    ultimately show ?thesis
      using ceil_divide_floor_conv[of y' x] `\<not> 0 \<le> l` `y' \<noteq> 0` `y \<noteq> 0`
      by (simp add: rapprox_posrat_def l_def round_up_def ceil_divide_floor_conv
                    floor_divide_eq_div[symmetric] dvd_eq_mod_eq_0 int_of_reals
               del: real_of_ints)
  qed
qed


lemma rat_precision_pos:
  assumes "0 \<le> x" and "0 < y" and "2 * x < y" and "0 < n"
  shows "rat_precision n (int x) (int y) > 0"
proof -
  { assume "0 < x" hence "log 2 x + 1 = log 2 (2 * x)" by (simp add: log_mult) }
  hence "bitlen (int x) < bitlen (int y)" using assms
    by (simp add: bitlen_def del: floor_add_one)
      (auto intro!: floor_mono simp add: floor_add_one[symmetric] simp del: floor_add floor_add_one)
  thus ?thesis
    using assms by (auto intro!: pos_add_strict simp add: field_simps rat_precision_def)
qed

lemma power_aux: assumes "x > 0" shows "(2::int) ^ nat (x - 1) \<le> 2 ^ nat x - 1"
proof -
  def y \<equiv> "nat (x - 1)" moreover
  have "(2::int) ^ y \<le> (2 ^ (y + 1)) - 1" by simp
  ultimately show ?thesis using assms by simp
qed

lemma rapprox_posrat_less1: assumes "0 \<le> x" and "0 < y" and "2 * x < y" and "0 < n"
  shows "real (rapprox_posrat n x y) < 1"
proof -
  have powr1: "2 powr real (rat_precision n (int x) (int y)) = 
    2 ^ nat (rat_precision n (int x) (int y))" using rat_precision_pos[of x y n] assms
    by (simp add: powr_realpow[symmetric])
  have "x * 2 powr real (rat_precision n (int x) (int y)) / y = (x / y) *
     2 powr real (rat_precision n (int x) (int y))" by simp
  also have "... < (1 / 2) * 2 powr real (rat_precision n (int x) (int y))"
    apply (rule mult_strict_right_mono) by (insert assms) auto
  also have "\<dots> = 2 powr real (rat_precision n (int x) (int y) - 1)"
    by (simp add: powr_add diff_def powr_neg_numeral)
  also have "\<dots> = 2 ^ nat (rat_precision n (int x) (int y) - 1)"
    using rat_precision_pos[of x y n] assms by (simp add: powr_realpow[symmetric])
  also have "\<dots> \<le> 2 ^ nat (rat_precision n (int x) (int y)) - 1"
    unfolding int_of_reals real_of_int_le_iff
    using rat_precision_pos[OF assms] by (rule power_aux)
  finally show ?thesis unfolding rapprox_posrat_def
    apply (simp add: round_up_def)
    apply (simp add: round_up_def field_simps powr_minus inverse_eq_divide)
    unfolding powr1
    unfolding int_of_reals real_of_int_less_iff
    unfolding ceiling_less_eq using rat_precision_pos[of x y n] assms apply simp done
qed

definition lapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" where
  "lapprox_rat prec x y = float_of (round_down (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y))"

lemma compute_lapprox_rat[code]:
  "lapprox_rat prec x y =
    (if y = 0 then 0
    else if 0 \<le> x then
      (if 0 < y then lapprox_posrat prec (nat x) (nat y)
      else - (rapprox_posrat prec (nat x) (nat (-y)))) 
      else (if 0 < y
        then - (rapprox_posrat prec (nat (-x)) (nat y))
        else lapprox_posrat prec (nat (-x)) (nat (-y))))"
  apply (cases "y = 0")
  apply (simp add: lapprox_posrat_def rapprox_posrat_def round_down_def lapprox_rat_def)
  apply (auto simp: lapprox_rat_def lapprox_posrat_def rapprox_posrat_def round_up_def round_down_def
        ceiling_def real_of_float_uminus[symmetric] ac_simps int_of_reals simp del: real_of_ints)
  apply (auto simp: ac_simps)
  done

definition rapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" where
  "rapprox_rat prec x y = float_of (round_up (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y))"

lemma compute_rapprox_rat[code]:
  "rapprox_rat prec x y =
    (if y = 0 then 0
    else if 0 \<le> x then
      (if 0 < y then rapprox_posrat prec (nat x) (nat y)
      else - (lapprox_posrat prec (nat x) (nat (-y)))) 
      else (if 0 < y
        then - (lapprox_posrat prec (nat (-x)) (nat y))
        else rapprox_posrat prec (nat (-x)) (nat (-y))))"
  apply (cases "y = 0", simp add: lapprox_posrat_def rapprox_posrat_def round_up_def rapprox_rat_def)
  apply (auto simp: rapprox_rat_def lapprox_posrat_def rapprox_posrat_def round_up_def round_down_def
        ceiling_def real_of_float_uminus[symmetric] ac_simps int_of_reals simp del: real_of_ints)
  apply (auto simp: ac_simps)
  done

subsection {* Division *}

definition div_precision
where "div_precision prec x y =
  rat_precision prec \<bar>mantissa x\<bar> \<bar>mantissa y\<bar> - exponent x + exponent y"

definition float_divl :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float"
where "float_divl prec a b =
  float_of (round_down (div_precision prec a b) (a / b))"

lemma compute_float_divl[code]:
  fixes m1 s1 m2 s2
  defines "f1 \<equiv> Float m1 s1" and "f2 \<equiv> Float m2 s2"
  shows "float_divl prec f1 f2 = lapprox_rat prec m1 m2 * Float 1 (s1 - s2)"
proof cases
  assume "f1 \<noteq> 0 \<and> f2 \<noteq> 0"
  then have "f1 \<noteq> float_of 0" "f2 \<noteq> float_of 0" by auto
  with mantissa_not_dvd[of f1] mantissa_not_dvd[of f2]
  have "mantissa f1 \<noteq> 0" "mantissa f2 \<noteq> 0"
    by (auto simp add: dvd_def)  
  then have pos: "0 < \<bar>mantissa f1\<bar>" "0 < \<bar>mantissa f2\<bar>"
    by simp_all
  moreover from f1_def[THEN denormalize_shift, OF `f1 \<noteq> float_of 0`] guess i . note i = this
  moreover from f2_def[THEN denormalize_shift, OF `f2 \<noteq> float_of 0`] guess j . note j = this
  moreover have "(real (mantissa f1) * 2 ^ i / (real (mantissa f2) * 2 ^ j))
    = (real (mantissa f1) / real (mantissa f2)) * 2 powr (int i - int j)"
    by (simp add: powr_divide2[symmetric] powr_realpow)
  moreover have "real f1 / real f2 = real (mantissa f1) / real (mantissa f2) * 2 powr real (exponent f1 - exponent f2)"
    unfolding mantissa_exponent by (simp add: powr_divide2[symmetric])
  moreover have "rat_precision prec (\<bar>mantissa f1\<bar> * 2 ^ i) (\<bar>mantissa f2\<bar> * 2 ^ j) =
    rat_precision prec \<bar>mantissa f1\<bar> \<bar>mantissa f2\<bar> + j - i"
    using pos by (simp add: rat_precision_def)
  ultimately show ?thesis
    unfolding float_divl_def lapprox_rat_def div_precision_def
    by (simp add: abs_mult round_down_shift powr_divide2[symmetric]
                del: int_nat_eq real_of_int_diff times_divide_eq_left )
       (simp add: field_simps powr_divide2[symmetric] powr_add)
next
  assume "\<not> (f1 \<noteq> 0 \<and> f2 \<noteq> 0)" then show ?thesis
    by (auto simp add: float_divl_def f1_def f2_def lapprox_rat_def)
qed  

definition float_divr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float"
where "float_divr prec a b =
  float_of (round_up (div_precision prec a b) (a / b))"

lemma compute_float_divr[code]:
  fixes m1 s1 m2 s2
  defines "f1 \<equiv> Float m1 s1" and "f2 \<equiv> Float m2 s2"
  shows "float_divr prec f1 f2 = rapprox_rat prec m1 m2 * Float 1 (s1 - s2)"
proof cases
  assume "f1 \<noteq> 0 \<and> f2 \<noteq> 0"
  then have "f1 \<noteq> float_of 0" "f2 \<noteq> float_of 0" by auto
  with mantissa_not_dvd[of f1] mantissa_not_dvd[of f2]
  have "mantissa f1 \<noteq> 0" "mantissa f2 \<noteq> 0"
    by (auto simp add: dvd_def)  
  then have pos: "0 < \<bar>mantissa f1\<bar>" "0 < \<bar>mantissa f2\<bar>"
    by simp_all
  moreover from f1_def[THEN denormalize_shift, OF `f1 \<noteq> float_of 0`] guess i . note i = this
  moreover from f2_def[THEN denormalize_shift, OF `f2 \<noteq> float_of 0`] guess j . note j = this
  moreover have "(real (mantissa f1) * 2 ^ i / (real (mantissa f2) * 2 ^ j))
    = (real (mantissa f1) / real (mantissa f2)) * 2 powr (int i - int j)"
    by (simp add: powr_divide2[symmetric] powr_realpow)
  moreover have "real f1 / real f2 = real (mantissa f1) / real (mantissa f2) * 2 powr real (exponent f1 - exponent f2)"
    unfolding mantissa_exponent by (simp add: powr_divide2[symmetric])
  moreover have "rat_precision prec (\<bar>mantissa f1\<bar> * 2 ^ i) (\<bar>mantissa f2\<bar> * 2 ^ j) =
    rat_precision prec \<bar>mantissa f1\<bar> \<bar>mantissa f2\<bar> + j - i"
    using pos by (simp add: rat_precision_def)
  ultimately show ?thesis
    unfolding float_divr_def rapprox_rat_def div_precision_def
    by (simp add: abs_mult round_up_shift powr_divide2[symmetric]
                del: int_nat_eq real_of_int_diff times_divide_eq_left)
       (simp add: field_simps powr_divide2[symmetric] powr_add)
next
  assume "\<not> (f1 \<noteq> 0 \<and> f2 \<noteq> 0)" then show ?thesis
    by (auto simp add: float_divr_def f1_def f2_def rapprox_rat_def)
qed

subsection {* Lemmas needed by Approximate *}

declare one_float_def[simp del] zero_float_def[simp del]

lemma Float_num[simp]: shows
   "real (Float 1 0) = 1" and "real (Float 1 1) = 2" and "real (Float 1 2) = 4" and
   "real (Float 1 -1) = 1/2" and "real (Float 1 -2) = 1/4" and "real (Float 1 -3) = 1/8" and
   "real (Float -1 0) = -1" and "real (Float (number_of n) 0) = number_of n"
using two_powr_int_float[of 2] two_powr_int_float[of "-1"] two_powr_int_float[of "-2"] two_powr_int_float[of "-3"]
using powr_realpow[of 2 2] powr_realpow[of 2 3]
using powr_minus[of 2 1] powr_minus[of 2 2] powr_minus[of 2 3]
by auto

lemma real_of_Float_int[simp]: "real (Float n 0) = real n" by simp

lemma float_zero[simp]: "real (Float 0 e) = 0" by simp

lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
by arith

lemma lapprox_rat:
  shows "real (lapprox_rat prec x y) \<le> real x / real y"
  using round_down by (simp add: lapprox_rat_def)

lemma mult_div_le: fixes a b:: int assumes "b > 0" shows "a \<ge> b * (a div b)"
proof -
  from zmod_zdiv_equality'[of a b]
  have "a = b * (a div b) + a mod b" by simp
  also have "... \<ge> b * (a div b) + 0" apply (rule add_left_mono) apply (rule pos_mod_sign)
  using assms by simp
  finally show ?thesis by simp
qed

lemma lapprox_rat_nonneg:
  fixes n x y
  defines "p == int n - ((bitlen \<bar>x\<bar>) - (bitlen \<bar>y\<bar>))"
  assumes "0 \<le> x" "0 < y"
  shows "0 \<le> real (lapprox_rat n x y)"
using assms unfolding lapprox_rat_def p_def[symmetric] round_down_def real_of_int_minus[symmetric]
   powr_int[of 2, simplified]
  by (auto simp add: inverse_eq_divide intro!: mult_nonneg_nonneg divide_nonneg_pos mult_pos_pos)

lemma rapprox_rat: "real x / real y \<le> real (rapprox_rat prec x y)"
  using round_up by (simp add: rapprox_rat_def)

lemma rapprox_rat_le1:
  fixes n x y
  assumes xy: "0 \<le> x" "0 < y" "x \<le> y"
  shows "real (rapprox_rat n x y) \<le> 1"
proof -
  have "bitlen \<bar>x\<bar> \<le> bitlen \<bar>y\<bar>"
    using xy unfolding bitlen_def by (auto intro!: floor_mono)
  then have "0 \<le> rat_precision n \<bar>x\<bar> \<bar>y\<bar>" by (simp add: rat_precision_def)
  have "real \<lceil>real x / real y * 2 powr real (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)\<rceil>
      \<le> real \<lceil>2 powr real (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)\<rceil>"
    using xy by (auto intro!: ceiling_mono simp: field_simps)
  also have "\<dots> = 2 powr real (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)"
    using `0 \<le> rat_precision n \<bar>x\<bar> \<bar>y\<bar>`
    by (auto intro!: exI[of _ "2^nat (rat_precision n \<bar>x\<bar> \<bar>y\<bar>)"] simp: powr_int)
  finally show ?thesis
    by (simp add: rapprox_rat_def round_up_def)
       (simp add: powr_minus inverse_eq_divide)
qed

lemma rapprox_rat_nonneg_neg: 
  "0 \<le> x \<Longrightarrow> y < 0 \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
  unfolding rapprox_rat_def round_up_def
  by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff)

lemma rapprox_rat_neg:
  "x < 0 \<Longrightarrow> 0 < y \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
  unfolding rapprox_rat_def round_up_def
  by (auto simp: field_simps mult_le_0_iff)

lemma rapprox_rat_nonpos_pos:
  "x \<le> 0 \<Longrightarrow> 0 < y \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
  unfolding rapprox_rat_def round_up_def
  by (auto simp: field_simps mult_le_0_iff)

lemma float_divl: "real (float_divl prec x y) \<le> real x / real y"
  using round_down by (simp add: float_divl_def)

lemma float_divl_lower_bound:
  fixes x y prec
  defines "p == rat_precision prec \<bar>mantissa x\<bar> \<bar>mantissa y\<bar> - exponent x + exponent y"
  assumes xy: "0 \<le> x" "0 < y" shows "0 \<le> real (float_divl prec x y)"
  using xy unfolding float_divl_def p_def[symmetric] round_down_def
  by (simp add: zero_le_mult_iff zero_le_divide_iff less_eq_float_def less_float_def)

lemma exponent_1: "exponent 1 = 0"
  using exponent_float[of 1 0] by (simp add: one_float_def)

lemma mantissa_1: "mantissa 1 = 1"
  using mantissa_float[of 1 0] by (simp add: one_float_def)

lemma bitlen_1: "bitlen 1 = 1"
  by (simp add: bitlen_def)

lemma mantissa_eq_zero_iff: "mantissa x = 0 \<longleftrightarrow> x = 0"
proof
  assume "mantissa x = 0" hence z: "0 = real x" using mantissa_exponent by simp
  show "x = 0" by (simp add: zero_float_def z)
qed (simp add: zero_float_def)

lemma float_upper_bound: "x \<le> 2 powr (bitlen \<bar>mantissa x\<bar> + exponent x)"
proof (cases "x = 0", simp)
  assume "x \<noteq> 0" hence "mantissa x \<noteq> 0" using mantissa_eq_zero_iff by auto
  have "x = mantissa x * 2 powr (exponent x)" by (rule mantissa_exponent)
  also have "mantissa x \<le> \<bar>mantissa x\<bar>" by simp
  also have "... \<le> 2 powr (bitlen \<bar>mantissa x\<bar>)"
    using bitlen_bounds[of "\<bar>mantissa x\<bar>"] bitlen_nonneg `mantissa x \<noteq> 0`
    by (simp add: powr_int) (simp only: two_real_int int_of_reals real_of_int_abs[symmetric]
      real_of_int_le_iff less_imp_le)
  finally show ?thesis by (simp add: powr_add)
qed

lemma float_divl_pos_less1_bound:
  assumes "0 < real x" and "real x < 1" and "prec \<ge> 1"
  shows "1 \<le> real (float_divl prec 1 x)"
proof cases
  assume nonneg: "div_precision prec 1 x \<ge> 0"
  hence "2 powr real (div_precision prec 1 x) =
    floor (real ((2::int) ^ nat (div_precision prec 1 x))) * floor (1::real)"
    by (simp add: powr_int del: real_of_int_power) simp
  also have "floor (1::real) \<le> floor (1 / x)" using assms by simp
  also have "floor (real ((2::int) ^ nat (div_precision prec 1 x))) * floor (1 / x) \<le>
    floor (real ((2::int) ^ nat (div_precision prec 1 x)) * (1 / x))"
    by (rule le_mult_floor) (auto simp: assms less_imp_le)
  finally have "2 powr real (div_precision prec 1 x) <=
    floor (2 powr nat (div_precision prec 1 x) / x)" by (simp add: powr_realpow)
  thus ?thesis
    using assms nonneg
    unfolding float_divl_def round_down_def
    by simp (simp add: powr_minus inverse_eq_divide)
next
  assume neg: "\<not> 0 \<le> div_precision prec 1 x"
  have "1 \<le> 1 * 2 powr (prec - 1)" using assms by (simp add: powr_realpow)
  also have "... \<le> 2 powr (bitlen \<bar>mantissa x\<bar> + exponent x) / x * 2 powr (prec - 1)"
    apply (rule mult_mono) using assms float_upper_bound
    by (auto intro!: divide_nonneg_pos)
  also have "2 powr (bitlen \<bar>mantissa x\<bar> + exponent x) / x * 2 powr (prec - 1) =
    2 powr real (div_precision prec 1 x) / real x"
    using assms
    apply (simp add: div_precision_def rat_precision_def diff_diff_eq2
    mantissa_1 exponent_1 bitlen_1 powr_add powr_minus real_of_nat_diff)
    apply (simp only: diff_def powr_add)
    apply simp
    done
  finally have "1 \<le> \<lfloor>2 powr real (div_precision prec 1 x) / real x\<rfloor>"
    using floor_mono[of "1::real"] by simp thm mult_mono
  hence "1 \<le> real \<lfloor>2 powr real (div_precision prec 1 x) / real x\<rfloor>"
    by (metis floor_real_of_int one_le_floor)
  hence "1 * 1 \<le>
    real \<lfloor>2 powr real (div_precision prec 1 x) / real x\<rfloor> * 2 powr - real (div_precision prec 1 x)"
  apply (rule mult_mono)
    using assms neg
    by (auto intro: divide_nonneg_pos mult_nonneg_nonneg simp: real_of_int_minus[symmetric] powr_int simp del: real_of_int_minus) find_theorems "real (- _)"
  thus ?thesis
    using assms neg
    unfolding float_divl_def round_down_def
    by simp
qed

lemma float_divr: "real x / real y \<le> real (float_divr prec x y)"
  using round_up by (simp add: float_divr_def)

lemma float_divr_pos_less1_lower_bound: assumes "0 < x" and "x < 1" shows "1 \<le> float_divr prec 1 x"
proof -
  have "1 \<le> 1 / real x" using `0 < x` and `x < 1` unfolding less_float_def by auto
  also have "\<dots> \<le> real (float_divr prec 1 x)" using float_divr[where x=1 and y=x] by auto
  finally show ?thesis unfolding less_eq_float_def by auto
qed

lemma float_divr_nonpos_pos_upper_bound:
  assumes "real x \<le> 0" and "0 < real y"
  shows "real (float_divr prec x y) \<le> 0"
using assms
unfolding float_divr_def round_up_def
by (auto simp: field_simps mult_le_0_iff divide_le_0_iff)

lemma float_divr_nonneg_neg_upper_bound:
  assumes "0 \<le> real x" and "real y < 0"
  shows "real (float_divr prec x y) \<le> 0"
using assms
unfolding float_divr_def round_up_def
by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff divide_le_0_iff)

definition "round_prec p f = int p - (bitlen \<bar>mantissa f\<bar> + exponent f)"

definition float_round_down :: "nat \<Rightarrow> float \<Rightarrow> float" where
"float_round_down prec f = float_of (round_down (round_prec prec f) f)"

definition float_round_up :: "nat \<Rightarrow> float \<Rightarrow> float" where
"float_round_up prec f = float_of (round_up (round_prec prec f) f)"

lemma compute_float_round_down[code]:
fixes prec m e
defines "d == bitlen (abs m) - int prec"
defines "P == 2^nat d"
defines "f == Float m e"
shows "float_round_down prec f = (let d = d in
    if 0 < d then let P = P ; n = m div P in Float n (e + d)
             else f)"
  unfolding float_round_down_def float_down_def[symmetric]
    compute_float_down f_def Let_def P_def round_prec_def d_def bitlen_Float
  by (simp add: field_simps)
  
lemma compute_float_round_up[code]:
fixes prec m e
defines "d == bitlen (abs m) - int prec"
defines "P == 2^nat d"
defines "f == Float m e"
shows "float_round_up prec f = (let d = d in
  if 0 < d then let P = P ; n = m div P ; r = m mod P in Float (n + (if r = 0 then 0 else 1)) (e + d)
           else f)"
  unfolding float_round_up_def float_up_def[symmetric]
    compute_float_up f_def Let_def P_def round_prec_def d_def bitlen_Float
  by (simp add: field_simps)

lemma float_round_up: "real x \<le> real (float_round_up prec x)"
  using round_up
  by (simp add: float_round_up_def)

lemma float_round_down: "real (float_round_down prec x) \<le> real x"
  using round_down
  by (simp add: float_round_down_def)

instantiation float :: lattice_ab_group_add
begin

definition inf_float::"float\<Rightarrow>float\<Rightarrow>float"
where "inf_float a b = min a b"

definition sup_float::"float\<Rightarrow>float\<Rightarrow>float"
where "sup_float a b = max a b"

instance
proof
  fix x y :: float show "inf x y \<le> x" unfolding inf_float_def by simp
  show "inf x y \<le> y" unfolding inf_float_def by simp
  show "x \<le> sup x y" unfolding sup_float_def by simp
  show "y \<le> sup x y" unfolding sup_float_def by simp
  fix z::float
  assume "x \<le> y" "x \<le> z" thus "x \<le> inf y z" unfolding inf_float_def by simp
  next fix x y z :: float
  assume "y \<le> x" "z \<le> x" thus "sup y z \<le> x" unfolding sup_float_def by simp
qed

end

lemma Float_le_zero_iff: "Float a b \<le> 0 \<longleftrightarrow> a \<le> 0"
 apply (auto simp: zero_float_def mult_le_0_iff)
 using powr_gt_zero[of 2 b] by simp

(* TODO: how to use as code equation? -> pprt_float?! *)
lemma compute_pprt[code]: "pprt (Float a e) = (if a <= 0 then 0 else (Float a e))"
unfolding pprt_def sup_float_def max_def Float_le_zero_iff ..

(* TODO: how to use as code equation? *)
lemma compute_nprt[code]: "nprt (Float a e) = (if a <= 0 then (Float a e) else 0)"
unfolding nprt_def inf_float_def min_def Float_le_zero_iff ..

lemma of_float_pprt[simp]: fixes a::float shows "real (pprt a) = pprt (real a)"
  unfolding pprt_def sup_float_def max_def sup_real_def by (auto simp: less_eq_float_def)

lemma of_float_nprt[simp]: fixes a::float shows "real (nprt a) = nprt (real a)"
  unfolding nprt_def inf_float_def min_def inf_real_def by (auto simp: less_eq_float_def)

definition int_floor_fl :: "float \<Rightarrow> int" where
  "int_floor_fl f = floor f"

lemma compute_int_floor_fl[code]:
  shows "int_floor_fl (Float m e) = (if 0 \<le> e then m * 2 ^ nat e
                                  else m div (2 ^ (nat (-e))))"
  by (simp add: int_floor_fl_def powr_int int_of_reals floor_divide_eq_div del: real_of_ints)

definition floor_fl :: "float \<Rightarrow> float" where
  "floor_fl f = float_of (floor f)"

lemma compute_floor_fl[code]:
  shows "floor_fl (Float m e) = (if 0 \<le> e then Float m e
                                  else Float (m div (2 ^ (nat (-e)))) 0)"
  by (simp add: floor_fl_def powr_int int_of_reals floor_divide_eq_div del: real_of_ints)

lemma floor_fl: "real (floor_fl x) \<le> real x" by (simp add: floor_fl_def)
lemma int_floor_fl: "real (int_floor_fl x) \<le> real x" by (simp add: int_floor_fl_def)

lemma floor_pos_exp: "exponent (floor_fl x) \<ge> 0"
proof cases
  assume nzero: "floor_fl x \<noteq> float_of 0"
  have "floor_fl x \<equiv> Float \<lfloor>real x\<rfloor> 0" by (simp add: floor_fl_def)
  from denormalize_shift[OF this nzero] guess i . note i = this
  thus ?thesis by simp
qed (simp add: floor_fl_def)

(* TODO: not used in approximation
definition ceiling_fl :: "float_of \<Rightarrow> float" where
  "ceiling_fl f = float_of (ceiling f)"

lemma compute_ceiling_fl:
  "ceiling_fl (Float m e) = (if 0 \<le> e then Float m e
                                    else Float (m div (2 ^ (nat (-e))) + 1) 0)"

lemma ceiling_fl: "real x \<le> real (ceiling_fl x)"

definition lb_mod :: "nat \<Rightarrow> float_of \<Rightarrow> float_of \<Rightarrow> float_of \<Rightarrow> float" where
"lb_mod prec x ub lb = x - ceiling_fl (float_divr prec x lb) * ub"

definition ub_mod :: "nat \<Rightarrow> float_of \<Rightarrow> float_of \<Rightarrow> float_of \<Rightarrow> float" where
"ub_mod prec x ub lb = x - floor_fl (float_divl prec x ub) * lb"

lemma lb_mod: fixes k :: int assumes "0 \<le> real x" and "real k * y \<le> real x" (is "?k * y \<le> ?x")
  assumes "0 < real lb" "real lb \<le> y" (is "?lb \<le> y") "y \<le> real ub" (is "y \<le> ?ub")
  shows "real (lb_mod prec x ub lb) \<le> ?x - ?k * y"

lemma ub_mod: fixes k :: int and x :: float_of assumes "0 \<le> real x" and "real x \<le> real k * y" (is "?x \<le> ?k * y")
  assumes "0 < real lb" "real lb \<le> y" (is "?lb \<le> y") "y \<le> real ub" (is "y \<le> ?ub")
  shows "?x - ?k * y \<le> real (ub_mod prec x ub lb)"

*)

end