(* Title: Pure/Isar/code.ML
ID: $Id$
Author: Florian Haftmann, TU Muenchen
Abstract executable content of theory. Management of data dependent on
executable content. Cache assumes non-concurrent processing of a single theory.
*)
signature CODE =
sig
val add_func: thm -> theory -> theory
val add_nonlinear_func: thm -> theory -> theory
val add_liberal_func: thm -> theory -> theory
val add_default_func: thm -> theory -> theory
val add_default_func_attr: Attrib.src
val del_func: thm -> theory -> theory
val del_funcs: string -> theory -> theory
val add_funcl: string * (thm * bool) list Susp.T -> theory -> theory
val map_pre: (MetaSimplifier.simpset -> MetaSimplifier.simpset) -> theory -> theory
val map_post: (MetaSimplifier.simpset -> MetaSimplifier.simpset) -> theory -> theory
val add_inline: thm -> theory -> theory
val del_inline: thm -> theory -> theory
val add_post: thm -> theory -> theory
val del_post: thm -> theory -> theory
val add_functrans: string * (theory -> thm list -> thm list option) -> theory -> theory
val del_functrans: string -> theory -> theory
val add_datatype: (string * typ) list -> theory -> theory
val add_datatype_cmd: string list -> theory -> theory
val type_interpretation:
(string * ((string * sort) list * (string * typ list) list)
-> theory -> theory) -> theory -> theory
val add_case: thm -> theory -> theory
val add_undefined: string -> theory -> theory
val purge_data: theory -> theory
val coregular_algebra: theory -> Sorts.algebra
val operational_algebra: theory -> (sort -> sort) * Sorts.algebra
val these_funcs: theory -> string -> (thm * bool) list
val get_datatype: theory -> string -> ((string * sort) list * (string * typ list) list)
val get_datatype_of_constr: theory -> string -> string option
val get_case_data: theory -> string -> (int * string list) option
val is_undefined: theory -> string -> bool
val default_typ: theory -> string -> (string * sort) list * typ
val preprocess_conv: cterm -> thm
val preprocess_term: theory -> term -> term
val postprocess_conv: cterm -> thm
val postprocess_term: theory -> term -> term
val add_attribute: string * (Args.T list -> attribute * Args.T list) -> theory -> theory
val print_codesetup: theory -> unit
end;
signature CODE_DATA_ARGS =
sig
type T
val empty: T
val purge: theory -> string list -> T -> T
end;
signature CODE_DATA =
sig
type T
val get: theory -> T
val change: theory -> (T -> T) -> T
val change_yield: theory -> (T -> 'a * T) -> 'a * T
end;
signature PRIVATE_CODE =
sig
include CODE
val declare_data: Object.T -> (theory -> string list -> Object.T -> Object.T)
-> serial
val get_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> 'a
val change_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> ('a -> 'a) -> 'a
val change_yield_data: serial * ('a -> Object.T) * (Object.T -> 'a)
-> theory -> ('a -> 'b * 'a) -> 'b * 'a
end;
structure Code : PRIVATE_CODE =
struct
(** code attributes **)
structure CodeAttr = TheoryDataFun (
type T = (string * (Args.T list -> attribute * Args.T list)) list;
val empty = [];
val copy = I;
val extend = I;
fun merge _ = AList.merge (op = : string * string -> bool) (K true);
);
fun add_attribute (attr as (name, _)) =
let
fun add_parser ("", parser) attrs = attrs @ [("", parser)]
| add_parser (name, parser) attrs = (name, Args.$$$ name |-- parser) :: attrs;
fun error "" = error ("Code attribute already declared")
| error name = error ("Code attribute " ^ name ^ " already declared")
in CodeAttr.map (fn attrs => if AList.defined (op =) attrs name
then error name else add_parser attr attrs)
end;
val _ =
let
val code_attr = Attrib.syntax (Scan.peek (fn context =>
List.foldr op || Scan.fail (map snd (CodeAttr.get (Context.theory_of context)))));
in
Context.>> (Context.map_theory
(Attrib.add_attributes
[("code", code_attr, "declare theorems for code generation")]))
end;
(** logical and syntactical specification of executable code **)
(* defining equations with linear flag, default flag and lazy theorems *)
fun pretty_lthms ctxt r = case Susp.peek r
of SOME thms => map (ProofContext.pretty_thm ctxt o fst) thms
| NONE => [Pretty.str "[...]"];
fun certificate thy f r =
case Susp.peek r
of SOME thms => (Susp.value o burrow_fst (f thy)) thms
| NONE => let
val thy_ref = Theory.check_thy thy;
in Susp.delay (fn () => (burrow_fst (f (Theory.deref thy_ref)) o Susp.force) r) end;
fun add_drop_redundant (thm, linear) thms =
let
val thy = Thm.theory_of_thm thm;
val args_of = snd o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
val args = args_of thm;
fun matches_args args' = length args <= length args' andalso
Pattern.matchess thy (args, curry Library.take (length args) args');
fun drop (thm', _) = if matches_args (args_of thm') then
(warning ("Code generator: dropping redundant defining equation\n" ^ Display.string_of_thm thm'); true)
else false;
in (thm, linear) :: filter_out drop thms end;
fun add_thm _ thm (false, thms) = (false, Susp.map_force (add_drop_redundant thm) thms)
| add_thm true thm (true, thms) = (true, Susp.map_force (fn thms => thms @ [thm]) thms)
| add_thm false thm (true, thms) = (false, Susp.value [thm]);
fun add_lthms lthms _ = (false, lthms);
fun del_thm thm = (apsnd o Susp.map_force) (remove (eq_fst Thm.eq_thm_prop) (thm, true));
fun merge_defthms ((true, _), defthms2) = defthms2
| merge_defthms (defthms1 as (false, _), (true, _)) = defthms1
| merge_defthms ((false, _), defthms2 as (false, _)) = defthms2;
(* syntactic datatypes *)
val eq_string = op = : string * string -> bool;
fun eq_dtyp ((vs1, cs1), (vs2, cs2)) =
gen_eq_set (eq_pair eq_string (gen_eq_set eq_string)) (vs1, vs2)
andalso gen_eq_set (eq_fst eq_string) (cs1, cs2);
fun merge_dtyps (tabs as (tab1, tab2)) =
let
fun join _ (cos as (_, cos2)) = if eq_dtyp cos then raise Symtab.SAME else cos2;
in Symtab.join join tabs end;
(* specification data *)
datatype spec = Spec of {
funcs: (bool * (thm * bool) list Susp.T) Symtab.table,
dtyps: ((string * sort) list * (string * typ list) list) Symtab.table,
cases: (int * string list) Symtab.table * unit Symtab.table
};
fun mk_spec (funcs, (dtyps, cases)) =
Spec { funcs = funcs, dtyps = dtyps, cases = cases };
fun map_spec f (Spec { funcs = funcs, dtyps = dtyps, cases = cases }) =
mk_spec (f (funcs, (dtyps, cases)));
fun merge_spec (Spec { funcs = funcs1, dtyps = dtyps1, cases = (cases1, undefs1) },
Spec { funcs = funcs2, dtyps = dtyps2, cases = (cases2, undefs2) }) =
let
val funcs = Symtab.join (K merge_defthms) (funcs1, funcs2);
val dtyps = merge_dtyps (dtyps1, dtyps2);
val cases = (Symtab.merge (K true) (cases1, cases2),
Symtab.merge (K true) (undefs1, undefs2));
in mk_spec (funcs, (dtyps, cases)) end;
(* pre- and postprocessor *)
datatype thmproc = Thmproc of {
pre: MetaSimplifier.simpset,
post: MetaSimplifier.simpset,
functrans: (string * (serial * (theory -> thm list -> thm list option))) list
};
fun mk_thmproc ((pre, post), functrans) =
Thmproc { pre = pre, post = post, functrans = functrans };
fun map_thmproc f (Thmproc { pre, post, functrans }) =
mk_thmproc (f ((pre, post), functrans));
fun merge_thmproc (Thmproc { pre = pre1, post = post1, functrans = functrans1 },
Thmproc { pre = pre2, post = post2, functrans = functrans2 }) =
let
val pre = MetaSimplifier.merge_ss (pre1, pre2);
val post = MetaSimplifier.merge_ss (post1, post2);
val functrans = AList.merge (op =) (eq_fst (op =)) (functrans1, functrans2);
in mk_thmproc ((pre, post), functrans) end;
datatype exec = Exec of {
thmproc: thmproc,
spec: spec
};
(* code setup data *)
fun mk_exec (thmproc, spec) =
Exec { thmproc = thmproc, spec = spec };
fun map_exec f (Exec { thmproc = thmproc, spec = spec }) =
mk_exec (f (thmproc, spec));
fun merge_exec (Exec { thmproc = thmproc1, spec = spec1 },
Exec { thmproc = thmproc2, spec = spec2 }) =
let
val thmproc = merge_thmproc (thmproc1, thmproc2);
val spec = merge_spec (spec1, spec2);
in mk_exec (thmproc, spec) end;
val empty_exec = mk_exec (mk_thmproc ((MetaSimplifier.empty_ss, MetaSimplifier.empty_ss), []),
mk_spec (Symtab.empty, (Symtab.empty, (Symtab.empty, Symtab.empty))));
fun the_thmproc (Exec { thmproc = Thmproc x, ...}) = x;
fun the_spec (Exec { spec = Spec x, ...}) = x;
val the_funcs = #funcs o the_spec;
val the_dtyps = #dtyps o the_spec;
val the_cases = #cases o the_spec;
val map_thmproc = map_exec o apfst o map_thmproc;
val map_funcs = map_exec o apsnd o map_spec o apfst;
val map_dtyps = map_exec o apsnd o map_spec o apsnd o apfst;
val map_cases = map_exec o apsnd o map_spec o apsnd o apsnd;
(* data slots dependent on executable content *)
(*private copy avoids potential conflict of table exceptions*)
structure Datatab = TableFun(type key = int val ord = int_ord);
local
type kind = {
empty: Object.T,
purge: theory -> string list -> Object.T -> Object.T
};
val kinds = ref (Datatab.empty: kind Datatab.table);
val kind_keys = ref ([]: serial list);
fun invoke f k = case Datatab.lookup (! kinds) k
of SOME kind => f kind
| NONE => sys_error "Invalid code data identifier";
in
fun declare_data empty purge =
let
val k = serial ();
val kind = {empty = empty, purge = purge};
val _ = change kinds (Datatab.update (k, kind));
val _ = change kind_keys (cons k);
in k end;
fun invoke_init k = invoke (fn kind => #empty kind) k;
fun invoke_purge_all thy cs =
fold (fn k => Datatab.map_entry k
(invoke (fn kind => #purge kind thy cs) k)) (! kind_keys);
end; (*local*)
(** theory store **)
local
type data = Object.T Datatab.table;
val empty_data = Datatab.empty : data;
structure CodeData = TheoryDataFun
(
type T = exec * data ref;
val empty = (empty_exec, ref empty_data);
fun copy (exec, data) = (exec, ref (! data));
val extend = copy;
fun merge pp ((exec1, data1), (exec2, data2)) =
(merge_exec (exec1, exec2), ref empty_data);
);
val _ = Context.>> (Context.map_theory CodeData.init);
fun thy_data f thy = f ((snd o CodeData.get) thy);
fun get_ensure_init kind data_ref =
case Datatab.lookup (! data_ref) kind
of SOME x => x
| NONE => let val y = invoke_init kind
in (change data_ref (Datatab.update (kind, y)); y) end;
in
(* access to executable content *)
val the_exec = fst o CodeData.get;
fun complete_class_params thy cs =
fold (fn c => case AxClass.inst_of_param thy c
of NONE => insert (op =) c
| SOME (c', _) => insert (op =) c' #> insert (op =) c) cs [];
fun map_exec_purge touched f thy =
CodeData.map (fn (exec, data) => (f exec, ref (case touched
of SOME cs => invoke_purge_all thy (complete_class_params thy cs) (! data)
| NONE => empty_data))) thy;
val purge_data = (CodeData.map o apsnd) (K (ref empty_data));
(* access to data dependent on abstract executable content *)
fun get_data (kind, _, dest) = thy_data (get_ensure_init kind #> dest);
fun change_data (kind, mk, dest) =
let
fun chnge data_ref f =
let
val data = get_ensure_init kind data_ref;
val data' = f (dest data);
in (change data_ref (Datatab.update (kind, mk data')); data') end;
in thy_data chnge end;
fun change_yield_data (kind, mk, dest) =
let
fun chnge data_ref f =
let
val data = get_ensure_init kind data_ref;
val (x, data') = f (dest data);
in (x, (change data_ref (Datatab.update (kind, mk data')); data')) end;
in thy_data chnge end;
end; (*local*)
(* print executable content *)
fun print_codesetup thy =
let
val ctxt = ProofContext.init thy;
val exec = the_exec thy;
fun pretty_func (s, (_, lthms)) =
(Pretty.block o Pretty.fbreaks) (
Pretty.str s :: pretty_lthms ctxt lthms
);
fun pretty_dtyp (s, []) =
Pretty.str s
| pretty_dtyp (s, cos) =
(Pretty.block o Pretty.breaks) (
Pretty.str s
:: Pretty.str "="
:: separate (Pretty.str "|") (map (fn (c, []) => Pretty.str c
| (c, tys) =>
(Pretty.block o Pretty.breaks)
(Pretty.str (Code_Unit.string_of_const thy c)
:: Pretty.str "of"
:: map (Pretty.quote o Syntax.pretty_typ_global thy) tys)) cos)
);
val pre = (#pre o the_thmproc) exec;
val post = (#post o the_thmproc) exec;
val functrans = (map fst o #functrans o the_thmproc) exec;
val funcs = the_funcs exec
|> Symtab.dest
|> (map o apfst) (Code_Unit.string_of_const thy)
|> sort (string_ord o pairself fst);
val dtyps = the_dtyps exec
|> Symtab.dest
|> map (fn (dtco, (vs, cos)) =>
(Syntax.string_of_typ_global thy (Type (dtco, map TFree vs)), cos))
|> sort (string_ord o pairself fst)
in
(Pretty.writeln o Pretty.chunks) [
Pretty.block (
Pretty.str "defining equations:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_func) funcs
),
Pretty.block [
Pretty.str "preprocessing simpset:",
Pretty.fbrk,
MetaSimplifier.pretty_ss pre
],
Pretty.block [
Pretty.str "postprocessing simpset:",
Pretty.fbrk,
MetaSimplifier.pretty_ss post
],
Pretty.block (
Pretty.str "function transformers:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map Pretty.str) functrans
),
Pretty.block (
Pretty.str "datatypes:"
:: Pretty.fbrk
:: (Pretty.fbreaks o map pretty_dtyp) dtyps
)
]
end;
(** theorem transformation and certification **)
fun const_of thy = dest_Const o fst o strip_comb o fst o Logic.dest_equals
o ObjectLogic.drop_judgment thy o Thm.plain_prop_of;
fun const_of_func thy = AxClass.unoverload_const thy o const_of thy;
fun common_typ_funcs [] = []
| common_typ_funcs [thm] = [thm]
| common_typ_funcs (thms as thm :: _) = (*FIXME is too general*)
let
val thy = Thm.theory_of_thm thm;
fun incr_thm thm max =
let
val thm' = incr_indexes max thm;
val max' = Thm.maxidx_of thm' + 1;
in (thm', max') end;
val (thms', maxidx) = fold_map incr_thm thms 0;
val ty1 :: tys = map (snd o const_of thy) thms';
fun unify ty env = Sign.typ_unify thy (ty1, ty) env
handle Type.TUNIFY =>
error ("Type unificaton failed, while unifying defining equations\n"
^ (cat_lines o map Display.string_of_thm) thms
^ "\nwith types\n"
^ (cat_lines o map (Code_Unit.string_of_typ thy)) (ty1 :: tys));
val (env, _) = fold unify tys (Vartab.empty, maxidx)
val instT = Vartab.fold (fn (x_i, (sort, ty)) =>
cons (Thm.ctyp_of thy (TVar (x_i, sort)), Thm.ctyp_of thy ty)) env [];
in map (Thm.instantiate (instT, [])) thms' end;
fun certify_const thy const thms =
let
fun cert thm = if const = const_of_func thy thm
then thm else error ("Wrong head of defining equation,\nexpected constant "
^ Code_Unit.string_of_const thy const ^ "\n" ^ Display.string_of_thm thm)
in map cert thms end;
(** operational sort algebra and class discipline **)
local
fun aggr_neutr f y [] = y
| aggr_neutr f y (x::xs) = aggr_neutr f (f y x) xs;
fun aggregate f [] = NONE
| aggregate f (x::xs) = SOME (aggr_neutr f x xs);
fun inter_sorts algebra =
aggregate (map2 (curry (Sorts.inter_sort algebra)));
fun specific_constraints thy (class, tyco) =
let
val vs = Name.invents Name.context "" (Sign.arity_number thy tyco);
val classparams = (map fst o these o try (#params o AxClass.get_info thy)) class;
val funcs = classparams
|> map_filter (fn c => try (AxClass.param_of_inst thy) (c, tyco))
|> map (Symtab.lookup ((the_funcs o the_exec) thy))
|> (map o Option.map) (map fst o Susp.force o snd)
|> maps these
|> map (Thm.transfer thy);
fun sorts_of [Type (_, tys)] = map (snd o dest_TVar) tys
| sorts_of tys = map (snd o dest_TVar) tys;
val sorts = map (sorts_of o Sign.const_typargs thy o const_of thy) funcs;
in sorts end;
fun weakest_constraints thy algebra (class, tyco) =
let
val all_superclasses = Sorts.complete_sort algebra [class];
in case inter_sorts algebra (maps (fn class => specific_constraints thy (class, tyco)) all_superclasses)
of SOME sorts => sorts
| NONE => Sorts.mg_domain algebra tyco [class]
end;
fun strongest_constraints thy algebra (class, tyco) =
let
val all_subclasses = class :: Graph.all_preds ((#classes o Sorts.rep_algebra) algebra) [class];
val inst_subclasses = filter (can (Sorts.mg_domain algebra tyco) o single) all_subclasses;
in case inter_sorts algebra (maps (fn class => specific_constraints thy (class, tyco)) inst_subclasses)
of SOME sorts => sorts
| NONE => replicate
(Sign.arity_number thy tyco) (Sorts.minimize_sort algebra (Sorts.all_classes algebra))
end;
fun get_algebra thy (class, tyco) =
let
val base_algebra = Sign.classes_of thy;
in if can (Sorts.mg_domain base_algebra tyco) [class]
then base_algebra
else let
val superclasses = Sorts.super_classes base_algebra class;
val sorts = inter_sorts base_algebra
(map_filter (fn class => try (Sorts.mg_domain base_algebra tyco) [class]) superclasses)
|> the_default (replicate (Sign.arity_number thy tyco) [])
in
base_algebra
|> Sorts.add_arities (Syntax.pp_global thy) (tyco, [(class, sorts)])
end
end;
fun gen_classparam_typ constr thy class (c, tyco) =
let
val algebra = get_algebra thy (class, tyco);
val cs = these (try (#params o AxClass.get_info thy) class);
val SOME ty = AList.lookup (op =) cs c;
val sort_args = Name.names (Name.declare Name.aT Name.context) Name.aT
(constr thy algebra (class, tyco));
val ty_inst = Type (tyco, map TFree sort_args);
in Logic.varifyT (map_type_tfree (K ty_inst) ty) end;
fun retrieve_algebra thy operational =
Sorts.subalgebra (Syntax.pp_global thy) operational
(weakest_constraints thy (Sign.classes_of thy))
(Sign.classes_of thy);
in
fun coregular_algebra thy = retrieve_algebra thy (K true) |> snd;
fun operational_algebra thy =
let
fun add_iff_operational class =
can (AxClass.get_info thy) class ? cons class;
val operational_classes = fold add_iff_operational (Sign.all_classes thy) []
in retrieve_algebra thy (member (op =) operational_classes) end;
val classparam_weakest_typ = gen_classparam_typ weakest_constraints;
val classparam_strongest_typ = gen_classparam_typ strongest_constraints;
fun assert_func_typ thm =
let
val thy = Thm.theory_of_thm thm;
fun check_typ_classparam tyco (c, thm) =
let
val SOME class = AxClass.class_of_param thy c;
val (_, ty) = const_of thy thm;
val ty_decl = classparam_weakest_typ thy class (c, tyco);
val ty_strongest = classparam_strongest_typ thy class (c, tyco);
fun constrain thm =
let
val max = Thm.maxidx_of thm + 1;
val ty_decl' = Logic.incr_tvar max ty_decl;
val (_, ty') = const_of thy thm;
val (env, _) = Sign.typ_unify thy (ty_decl', ty') (Vartab.empty, max);
val instT = Vartab.fold (fn (x_i, (sort, ty)) =>
cons (Thm.ctyp_of thy (TVar (x_i, sort)), Thm.ctyp_of thy ty)) env [];
in Thm.instantiate (instT, []) thm end;
in if Sign.typ_instance thy (ty_strongest, ty)
then if Sign.typ_instance thy (ty, ty_decl)
then thm
else (warning ("Constraining type\n" ^ Code_Unit.string_of_typ thy ty
^ "\nof defining equation\n"
^ Display.string_of_thm thm
^ "\nto permitted most general type\n"
^ Code_Unit.string_of_typ thy ty_decl);
constrain thm)
else Code_Unit.bad_thm ("Type\n" ^ Code_Unit.string_of_typ thy ty
^ "\nof defining equation\n"
^ Display.string_of_thm thm
^ "\nis incompatible with permitted least general type\n"
^ Code_Unit.string_of_typ thy ty_strongest)
end;
fun check_typ_fun (c, thm) =
let
val (_, ty) = const_of thy thm;
val ty_decl = Sign.the_const_type thy c;
in if Sign.typ_equiv thy (Type.strip_sorts ty_decl, Type.strip_sorts ty)
then thm
else Code_Unit.bad_thm ("Type\n" ^ Code_Unit.string_of_typ thy ty
^ "\nof defining equation\n"
^ Display.string_of_thm thm
^ "\nis incompatible with declared function type\n"
^ Code_Unit.string_of_typ thy ty_decl)
end;
fun check_typ (c, thm) =
case AxClass.inst_of_param thy c
of SOME (c, tyco) => check_typ_classparam tyco (c, thm)
| NONE => check_typ_fun (c, thm);
in check_typ (const_of_func thy thm, thm) end;
fun mk_func linear = Code_Unit.error_thm (assert_func_typ o Code_Unit.mk_func linear);
val mk_liberal_func = Code_Unit.warning_thm (assert_func_typ o Code_Unit.mk_func true);
val mk_syntactic_func = Code_Unit.warning_thm (assert_func_typ o Code_Unit.mk_func false);
val mk_default_func = Code_Unit.try_thm (assert_func_typ o Code_Unit.mk_func true);
end; (*local*)
(** interfaces and attributes **)
fun delete_force msg key xs =
if AList.defined (op =) xs key then AList.delete (op =) key xs
else error ("No such " ^ msg ^ ": " ^ quote key);
fun get_datatype thy tyco =
case Symtab.lookup ((the_dtyps o the_exec) thy) tyco
of SOME spec => spec
| NONE => Sign.arity_number thy tyco
|> Name.invents Name.context Name.aT
|> map (rpair [])
|> rpair [];
fun get_datatype_of_constr thy c =
case (snd o strip_type o Sign.the_const_type thy) c
of Type (tyco, _) => if member (op =)
((the_default [] o Option.map (map fst o snd) o Symtab.lookup ((the_dtyps o the_exec) thy)) tyco) c
then SOME tyco else NONE
| _ => NONE;
fun get_constr_typ thy c =
case get_datatype_of_constr thy c
of SOME tyco => let
val (vs, cos) = get_datatype thy tyco;
val SOME tys = AList.lookup (op =) cos c;
val ty = tys ---> Type (tyco, map TFree vs);
in SOME (Logic.varifyT ty) end
| NONE => NONE;
val get_case_data = Symtab.lookup o fst o the_cases o the_exec;
val is_undefined = Symtab.defined o snd o the_cases o the_exec;
fun gen_add_func linear strict default thm thy =
case (if strict then SOME o mk_func linear else mk_liberal_func) thm
of SOME func =>
let
val c = const_of_func thy func;
val _ = if strict andalso (is_some o AxClass.class_of_param thy) c
then error ("Rejected polymorphic equation for overloaded constant:\n"
^ Display.string_of_thm thm)
else ();
val _ = if strict andalso (is_some o get_datatype_of_constr thy) c
then error ("Rejected equation for datatype constructor:\n"
^ Display.string_of_thm func)
else ();
in
(map_exec_purge (SOME [c]) o map_funcs) (Symtab.map_default
(c, (true, Susp.value [])) (add_thm default (func, linear))) thy
end
| NONE => thy;
val add_func = gen_add_func true true false;
val add_liberal_func = gen_add_func true false false;
val add_default_func = gen_add_func true false true;
val add_nonlinear_func = gen_add_func false true false;
fun del_func thm thy = case mk_syntactic_func thm
of SOME func => let
val c = const_of_func thy func;
in map_exec_purge (SOME [c]) (map_funcs
(Symtab.map_entry c (del_thm func))) thy
end
| NONE => thy;
fun del_funcs c = map_exec_purge (SOME [c])
(map_funcs (Symtab.map_entry c (K (false, Susp.value []))));
fun add_funcl (c, lthms) thy =
let
val lthms' = certificate thy (fn thy => certify_const thy c) lthms;
(*FIXME must check compatibility with sort algebra;
alas, naive checking results in non-termination!*)
in
map_exec_purge (SOME [c])
(map_funcs (Symtab.map_default (c, (true, Susp.value []))
(add_lthms lthms'))) thy
end;
val add_default_func_attr = Attrib.internal (fn _ => Thm.declaration_attribute
(fn thm => Context.mapping (add_default_func thm) I));
structure TypeInterpretation = InterpretationFun(type T = string * serial val eq = eq_snd (op =) : T * T -> bool);
fun add_datatype raw_cs thy =
let
val cs = map (fn c_ty as (_, ty) => (AxClass.unoverload_const thy c_ty, ty)) raw_cs;
val (tyco, vs_cos) = Code_Unit.constrset_of_consts thy cs;
val cs' = map fst (snd vs_cos);
val purge_cs = case Symtab.lookup ((the_dtyps o the_exec) thy) tyco
of SOME (vs, cos) => if null cos then NONE else SOME (cs' @ map fst cos)
| NONE => NONE;
in
thy
|> map_exec_purge purge_cs (map_dtyps (Symtab.update (tyco, vs_cos))
#> map_funcs (fold (Symtab.delete_safe o fst) cs))
|> TypeInterpretation.data (tyco, serial ())
end;
fun type_interpretation f = TypeInterpretation.interpretation
(fn (tyco, _) => fn thy => f (tyco, get_datatype thy tyco) thy);
fun add_datatype_cmd raw_cs thy =
let
val cs = map (Code_Unit.read_bare_const thy) raw_cs;
in add_datatype cs thy end;
fun add_case thm thy =
let
val entry as (c, _) = Code_Unit.case_cert thm;
in
(map_exec_purge (SOME [c]) o map_cases o apfst) (Symtab.update entry) thy
end;
fun add_undefined c thy =
(map_exec_purge (SOME [c]) o map_cases o apsnd) (Symtab.update (c, ())) thy;
val map_pre = map_exec_purge NONE o map_thmproc o apfst o apfst;
val map_post = map_exec_purge NONE o map_thmproc o apfst o apsnd;
fun add_inline thm thy = (map_pre o MetaSimplifier.add_simp)
(Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
(*fully applied in order to get right context for mk_rew!*)
fun del_inline thm thy = (map_pre o MetaSimplifier.del_simp)
(Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
(*fully applied in order to get right context for mk_rew!*)
fun add_post thm thy = (map_post o MetaSimplifier.add_simp)
(Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
(*fully applied in order to get right context for mk_rew!*)
fun del_post thm thy = (map_post o MetaSimplifier.del_simp)
(Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
(*fully applied in order to get right context for mk_rew!*)
fun add_functrans (name, f) =
(map_exec_purge NONE o map_thmproc o apsnd)
(AList.update (op =) (name, (serial (), f)));
fun del_functrans name =
(map_exec_purge NONE o map_thmproc o apsnd)
(delete_force "function transformer" name);
val _ = Context.>> (Context.map_theory
(let
fun mk_attribute f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
fun add_simple_attribute (name, f) =
add_attribute (name, Scan.succeed (mk_attribute f));
fun add_del_attribute (name, (add, del)) =
add_attribute (name, Args.del |-- Scan.succeed (mk_attribute del)
|| Scan.succeed (mk_attribute add))
in
TypeInterpretation.init
#> add_del_attribute ("func", (add_func, del_func))
#> add_simple_attribute ("nbe", add_nonlinear_func)
#> add_del_attribute ("inline", (add_inline, del_inline))
#> add_del_attribute ("post", (add_post, del_post))
end));
(** post- and preprocessing **)
local
fun apply_functrans thy [] = []
| apply_functrans thy (thms as (thm, _) :: _) =
let
val const = const_of_func thy thm;
val functrans = (map (fn (_, (_, f)) => f thy) o #functrans
o the_thmproc o the_exec) thy;
val thms' = perhaps (perhaps_loop (perhaps_apply functrans)) (map fst thms);
val thms'' = certify_const thy const thms';
val linears = map snd thms;
in (*FIXME temporary workaround*) if length thms'' = length linears
then thms'' ~~ linears
else map (rpair true) thms''
end;
fun rhs_conv conv thm =
let
val thm' = (conv o Thm.rhs_of) thm;
in Thm.transitive thm thm' end
fun term_of_conv thy f =
Thm.cterm_of thy
#> f
#> Thm.prop_of
#> Logic.dest_equals
#> snd;
in
fun preprocess thy thms =
let
val pre = (Simplifier.theory_context thy o #pre o the_thmproc o the_exec) thy;
in
thms
|> apply_functrans thy
|> (map o apfst) (Code_Unit.rewrite_func pre)
(*FIXME - must check here: rewrite rule, defining equation, proper constant *)
|> (map o apfst) (AxClass.unoverload thy)
|> burrow_fst common_typ_funcs
end;
fun preprocess_conv ct =
let
val thy = Thm.theory_of_cterm ct;
val pre = (Simplifier.theory_context thy o #pre o the_thmproc o the_exec) thy;
in
ct
|> Simplifier.rewrite pre
|> rhs_conv (AxClass.unoverload_conv thy)
end;
fun preprocess_term thy = term_of_conv thy preprocess_conv;
fun postprocess_conv ct =
let
val thy = Thm.theory_of_cterm ct;
val post = (Simplifier.theory_context thy o #post o the_thmproc o the_exec) thy;
in
ct
|> AxClass.overload_conv thy
|> rhs_conv (Simplifier.rewrite post)
end;
fun postprocess_term thy = term_of_conv thy postprocess_conv;
end; (*local*)
fun default_typ_proto thy c = case AxClass.inst_of_param thy c
of SOME (c, tyco) => classparam_weakest_typ thy ((the o AxClass.class_of_param thy) c)
(c, tyco) |> SOME
| NONE => (case AxClass.class_of_param thy c
of SOME class => SOME (Term.map_type_tvar
(K (TVar ((Name.aT, 0), [class]))) (Sign.the_const_type thy c))
| NONE => get_constr_typ thy c);
local
fun get_funcs thy const =
Symtab.lookup ((the_funcs o the_exec) thy) const
|> Option.map (Susp.force o snd)
|> these
|> (map o apfst) (Thm.transfer thy);
in
fun these_funcs thy const =
let
fun drop_refl thy = filter_out (is_equal o Term.fast_term_ord o Logic.dest_equals
o ObjectLogic.drop_judgment thy o Thm.plain_prop_of o fst);
in
get_funcs thy const
|> preprocess thy
|> drop_refl thy
end;
fun default_typ thy c = case default_typ_proto thy c
of SOME ty => Code_Unit.typscheme thy (c, ty)
| NONE => (case get_funcs thy c
of (thm, _) :: _ => snd (Code_Unit.head_func (AxClass.unoverload thy thm))
| [] => Code_Unit.typscheme thy (c, Sign.the_const_type thy c));
end; (*local*)
end; (*struct*)
(** type-safe interfaces for data depedent on executable content **)
functor CodeDataFun(Data: CODE_DATA_ARGS): CODE_DATA =
struct
type T = Data.T;
exception Data of T;
fun dest (Data x) = x
val kind = Code.declare_data (Data Data.empty)
(fn thy => fn cs => fn Data x => Data (Data.purge thy cs x));
val data_op = (kind, Data, dest);
val get = Code.get_data data_op;
val change = Code.change_data data_op;
fun change_yield thy = Code.change_yield_data data_op thy;
end;
structure Code : CODE = struct open Code; end;