(* Title: HOL/Import/import_data.ML
Author: Cezary Kaliszyk, University of Innsbruck
Author: Alexander Krauss, QAware GmbH
Importer data.
*)
signature IMPORT_DATA =
sig
val get_const_map : string -> theory -> string option
val get_typ_map : string -> theory -> string option
val get_const_def : string -> theory -> thm option
val get_typ_def : string -> theory -> thm option
val add_const_map : string -> string -> theory -> theory
val add_const_map_cmd : string -> string -> theory -> theory
val add_typ_map : string -> string -> theory -> theory
val add_typ_map_cmd : string -> string -> theory -> theory
val add_const_def : string -> thm -> string option -> theory -> theory
val add_typ_def : string -> string -> string -> thm -> theory -> theory
end
structure Import_Data: IMPORT_DATA =
struct
structure Data = Theory_Data
(
type T = {const_map: string Symtab.table, ty_map: string Symtab.table,
const_def: thm Symtab.table, ty_def: thm Symtab.table}
val empty = {const_map = Symtab.empty, ty_map = Symtab.empty,
const_def = Symtab.empty, ty_def = Symtab.empty}
fun merge
({const_map = cm1, ty_map = tm1, const_def = cd1, ty_def = td1},
{const_map = cm2, ty_map = tm2, const_def = cd2, ty_def = td2}) : T =
{const_map = Symtab.merge (K true) (cm1, cm2), ty_map = Symtab.merge (K true) (tm1, tm2),
const_def = Symtab.merge (K true) (cd1, cd2), ty_def = Symtab.merge (K true) (td1, td2)
}
)
fun get_const_map s thy = Symtab.lookup (#const_map (Data.get thy)) s
fun get_typ_map s thy = Symtab.lookup (#ty_map (Data.get thy)) s
fun get_const_def s thy = Symtab.lookup (#const_def (Data.get thy)) s
fun get_typ_def s thy = Symtab.lookup (#ty_def (Data.get thy)) s
fun add_const_map s1 s2 thy =
Data.map (fn {const_map, ty_map, const_def, ty_def} =>
{const_map = (Symtab.update (s1, s2) const_map), ty_map = ty_map,
const_def = const_def, ty_def = ty_def}) thy
fun add_const_map_cmd s1 raw_s2 thy =
let
val ctxt = Proof_Context.init_global thy
val Const (s2, _) = Proof_Context.read_const {proper = true, strict = false} ctxt raw_s2
in add_const_map s1 s2 thy end
fun add_typ_map s1 s2 thy =
Data.map (fn {const_map, ty_map, const_def, ty_def} =>
{const_map = const_map, ty_map = (Symtab.update (s1, s2) ty_map),
const_def = const_def, ty_def = ty_def}) thy
fun add_typ_map_cmd s1 raw_s2 thy =
let
val ctxt = Proof_Context.init_global thy
val Type (s2, _) = Proof_Context.read_type_name {proper = true, strict = false} ctxt raw_s2
in add_typ_map s1 s2 thy end
fun add_const_def s th name_opt thy =
let
val th = Thm.legacy_freezeT th
val name = case name_opt of
NONE => dest_Const_name (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th))))
| SOME n => n
val thy' = add_const_map s name thy
in
Data.map (fn {const_map, ty_map, const_def, ty_def} =>
{const_map = const_map, ty_map = ty_map,
const_def = (Symtab.update (s, th) const_def), ty_def = ty_def}) thy'
end
fun add_typ_def tyname absname repname th thy =
let
val th = Thm.legacy_freezeT th
val (l, _) = dest_comb (HOLogic.dest_Trueprop (Thm.prop_of th))
val (l, abst) = dest_comb l
val (_, rept) = dest_comb l
val absn = dest_Const_name abst
val repn = dest_Const_name rept
val nty = domain_type (fastype_of rept)
val ntyn = dest_Type_name nty
val thy2 = add_typ_map tyname ntyn thy
val thy3 = add_const_map absname absn thy2
val thy4 = add_const_map repname repn thy3
in
Data.map (fn {const_map, ty_map, const_def, ty_def} =>
{const_map = const_map, ty_map = ty_map,
const_def = const_def, ty_def = (Symtab.update (tyname, th) ty_def)}) thy4
end
val _ = Theory.setup
(Attrib.setup \<^binding>\<open>import_const\<close>
(Scan.lift Parse.name --
Scan.option (Scan.lift \<^keyword>\<open>:\<close> |-- Args.const {proper = true, strict = false}) >>
(fn (s1, s2) => Thm.declaration_attribute
(fn th => Context.mapping (add_const_def s1 th s2) I)))
"declare a theorem as an equality that maps the given constant")
val _ = Theory.setup
(Attrib.setup \<^binding>\<open>import_type\<close>
(Scan.lift (Parse.name -- Parse.name -- Parse.name) >>
(fn ((tyname, absname), repname) => Thm.declaration_attribute
(fn th => Context.mapping (add_typ_def tyname absname repname th) I)))
"declare a type_definition theorem as a map for an imported type with abs and rep")
val _ =
Outer_Syntax.command \<^command_keyword>\<open>import_type_map\<close>
"map external type name to existing Isabelle/HOL type name"
((Parse.name --| \<^keyword>\<open>:\<close>) -- Parse.type_const >>
(fn (ty_name1, ty_name2) => Toplevel.theory (add_typ_map_cmd ty_name1 ty_name2)))
val _ =
Outer_Syntax.command \<^command_keyword>\<open>import_const_map\<close>
"map external const name to existing Isabelle/HOL const name"
((Parse.name --| \<^keyword>\<open>:\<close>) -- Parse.const >>
(fn (cname1, cname2) => Toplevel.theory (add_const_map_cmd cname1 cname2)))
(* Initial type and constant maps, for types and constants that are not
defined, which means their definitions do not appear in the proof dump *)
val _ = Theory.setup
(add_typ_map "bool" \<^type_name>\<open>bool\<close> #>
add_typ_map "fun" \<^type_name>\<open>fun\<close> #>
add_typ_map "ind" \<^type_name>\<open>ind\<close> #>
add_const_map "=" \<^const_name>\<open>HOL.eq\<close> #>
add_const_map "@" \<^const_name>\<open>Eps\<close>)
end