(* Title: HOL/Tools/ATP/atp_util.ML
Author: Jasmin Blanchette, TU Muenchen
General-purpose functions used by the ATP module.
*)
signature ATP_UTIL =
sig
val proof_cartouches: bool Config.T
val timestamp : unit -> string
val hashw : word * word -> word
val hashw_string : string * word -> word
val hash_string : string -> int
val chunk_list : int -> 'a list -> 'a list list
val stringN_of_int : int -> int -> string
val strip_spaces : bool -> (char -> bool) -> string -> string
val strip_spaces_except_between_idents : string -> string
val elide_string : int -> string -> string
val find_enclosed : string -> string -> string -> string list
val nat_subscript : int -> string
val unquote_tvar : string -> string
val maybe_quote : Proof.context -> string -> string
val string_of_ext_time : bool * Time.time -> string
val string_of_time : Time.time -> string
val type_instance : theory -> typ -> typ -> bool
val type_generalization : theory -> typ -> typ -> bool
val type_intersect : theory -> typ -> typ -> bool
val type_equiv : theory -> typ * typ -> bool
val varify_type : Proof.context -> typ -> typ
val instantiate_type : theory -> typ -> typ -> typ -> typ
val varify_and_instantiate_type : Proof.context -> typ -> typ -> typ -> typ
val is_type_surely_finite : Proof.context -> typ -> bool
val is_type_surely_infinite : Proof.context -> bool -> typ list -> typ -> bool
val s_not : term -> term
val s_conj : term * term -> term
val s_disj : term * term -> term
val s_imp : term * term -> term
val s_iff : term * term -> term
val close_form : term -> term
val hol_close_form_prefix : string
val hol_close_form : term -> term
val hol_open_form : (string -> string) -> term -> term
val eta_expand : typ list -> term -> int -> term
val cong_extensionalize_term : Proof.context -> term -> term
val abs_extensionalize_term : Proof.context -> term -> term
val unextensionalize_def : term -> term
val transform_elim_prop : term -> term
val specialize_type : theory -> (string * typ) -> term -> term
val strip_subgoal : thm -> int -> Proof.context -> (string * typ) list * term list * term
val extract_lambda_def : (term -> string * typ) -> term -> string * term
val short_thm_name : Proof.context -> thm -> string
val map_prod : ('a -> 'b) -> ('c -> 'd) -> 'a * 'c -> 'b * 'd
val compare_length_with : 'a list -> int -> order
val forall2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
end;
structure ATP_Util : ATP_UTIL =
struct
val proof_cartouches = Attrib.setup_config_bool \<^binding>\<open>atp_proof_cartouches\<close> (K false)
fun forall2 _ [] [] = true
| forall2 P (x :: xs) (y :: ys) = P x y andalso forall2 P xs ys
| forall2 _ _ _ = false
fun timestamp_format time =
Date.fmt "%Y-%m-%d %H:%M:%S." (Date.fromTimeLocal time) ^
(StringCvt.padLeft #"0" 3 (string_of_int (Time.toMilliseconds time - 1000 * Time.toSeconds time)))
val timestamp = timestamp_format o Time.now
(* This hash function is recommended in "Compilers: Principles, Techniques, and
Tools" by Aho, Sethi, and Ullman. *)
fun hashw (u, w) = Word.+ (u, Word.* (0w65599, w))
fun hashw_char (c, w) = hashw (Word.fromInt (Char.ord c), w)
fun hashw_string (s : string, w) = CharVector.foldl hashw_char w s
fun hash_string s = Word.toInt (hashw_string (s, 0w0))
fun chunk_list _ [] = []
| chunk_list k xs =
let val (xs1, xs2) = chop k xs in xs1 :: chunk_list k xs2 end
fun stringN_of_int 0 _ = ""
| stringN_of_int k n =
stringN_of_int (k - 1) (n div 10) ^ string_of_int (n mod 10)
fun is_spaceish c = Char.isSpace c orelse c = #"\127" (* DEL -- no idea where these come from *)
fun strip_spaces skip_comments is_evil =
let
fun strip_c_style_comment [] accum = accum
| strip_c_style_comment (#"*" :: #"/" :: cs) accum = strip_spaces_in_list true cs accum
| strip_c_style_comment (_ :: cs) accum = strip_c_style_comment cs accum
and strip_spaces_in_list _ [] accum = accum
| strip_spaces_in_list true (#"%" :: cs) accum =
strip_spaces_in_list true (cs |> drop_prefix (not_equal #"\n")) accum
| strip_spaces_in_list true (#"/" :: #"*" :: cs) accum = strip_c_style_comment cs accum
| strip_spaces_in_list _ [c1] accum = accum |> not (is_spaceish c1) ? cons c1
| strip_spaces_in_list skip_comments (cs as [_, _]) accum =
accum |> fold (strip_spaces_in_list skip_comments o single) cs
| strip_spaces_in_list skip_comments (c1 :: c2 :: c3 :: cs) accum =
if is_spaceish c1 then
strip_spaces_in_list skip_comments (c2 :: c3 :: cs) accum
else if is_spaceish c2 then
if is_spaceish c3 then
strip_spaces_in_list skip_comments (c1 :: c3 :: cs) accum
else
strip_spaces_in_list skip_comments (c3 :: cs)
(c1 :: accum |> forall is_evil [c1, c3] ? cons #" ")
else
strip_spaces_in_list skip_comments (c2 :: c3 :: cs) (cons c1 accum)
in
String.explode
#> rpair [] #-> strip_spaces_in_list skip_comments
#> rev #> String.implode
end
fun is_ident_char c = Char.isAlphaNum c orelse c = #"_"
val strip_spaces_except_between_idents = strip_spaces true is_ident_char
fun elide_string threshold s =
if size s > threshold then
String.extract (s, 0, SOME (threshold div 2 - 5)) ^ " ...... " ^
String.extract (s, size s - (threshold + 1) div 2 + 6, NONE)
else
s
fun find_enclosed left right s =
case first_field left s of
SOME (_, s) =>
(case first_field right s of
SOME (enclosed, s) => enclosed :: find_enclosed left right s
| NONE => [])
| NONE => []
val subscript = implode o map (prefix "\<^sub>") o raw_explode (* FIXME Symbol.explode (?) *)
fun nat_subscript n =
n |> string_of_int |> not (print_mode_active Print_Mode.ASCII) ? subscript
val unquote_tvar = perhaps (try (unprefix "'"))
val unquery_var = perhaps (try (unprefix "?"))
val is_long_identifier = forall Symbol_Pos.is_identifier o Long_Name.explode
fun maybe_quote ctxt y =
let
val s = YXML.content_of y
val is_literal = Keyword.is_literal (Thy_Header.get_keywords' ctxt)
val q = if Config.get ctxt proof_cartouches then cartouche else quote
in
y |> ((not (is_long_identifier (unquote_tvar s)) andalso
not (is_long_identifier (unquery_var s))) orelse
is_literal s) ? q
end
fun string_of_ext_time (plus, time) =
let val us = Time.toMicroseconds time in
(if plus then "> " else "") ^
(if us < 1000 then string_of_real (Real.fromInt (us div 100) / 10.0) ^ " ms"
else if us < 1000000 then signed_string_of_int (us div 1000) ^ " ms"
else string_of_real (Real.fromInt (us div 100000) / 10.0) ^ " s")
end
val string_of_time = string_of_ext_time o pair false
fun type_instance thy T T' = Sign.typ_instance thy (T, T')
fun type_generalization thy T T' = Sign.typ_instance thy (T', T)
fun type_intersect _ (TVar _) _ = true
| type_intersect _ _ (TVar _) = true
| type_intersect thy T T' =
let
val tvars = Term.add_tvar_namesT T []
val tvars' = Term.add_tvar_namesT T' []
val maxidx' = maxidx_of_typ T'
val T =
T |> exists (member (op =) tvars') tvars ? Logic.incr_tvar (maxidx' + 1)
val maxidx = Integer.max (maxidx_of_typ T) maxidx'
in can (Sign.typ_unify thy (T, T')) (Vartab.empty, maxidx) end
val type_equiv = Sign.typ_equiv
fun varify_type ctxt T =
Variable.polymorphic_types ctxt [Const (\<^const_name>\<open>undefined\<close>, T)]
|> snd |> the_single |> dest_Const_type
(* TODO: use "Term_Subst.instantiateT" instead? *)
fun instantiate_type thy T1 T1' T2 =
Same.commit (Envir.subst_type_same
(Sign.typ_match thy (T1, T1') Vartab.empty)) T2
handle Type.TYPE_MATCH => raise TYPE ("instantiate_type", [T1, T1'], [])
fun varify_and_instantiate_type ctxt T1 T1' T2 =
let val thy = Proof_Context.theory_of ctxt in
instantiate_type thy (varify_type ctxt T1) T1' (varify_type ctxt T2)
end
fun free_constructors_of ctxt (Type (s, Ts)) =
(case Ctr_Sugar.ctr_sugar_of ctxt s of
SOME {ctrs, ...} => map_filter (try dest_Const o Ctr_Sugar.mk_ctr Ts) ctrs
| NONE => [])
| free_constructors_of _ _ = []
(* Similar to "Nitpick_HOL.bounded_exact_card_of_type".
0 means infinite type, 1 means singleton type (e.g., "unit"), and 2 means
cardinality 2 or more. The specified default cardinality is returned if the
cardinality of the type can't be determined. *)
fun tiny_card_of_type ctxt sound assigns default_card T =
let
val thy = Proof_Context.theory_of ctxt
val max = 2 (* 1 would be too small for the "fun" case *)
fun aux slack avoid T =
if member (op =) avoid T then
0
else case AList.lookup (type_equiv thy) assigns T of
SOME k => k
| NONE =>
case T of
Type (\<^type_name>\<open>fun\<close>, [T1, T2]) =>
(case (aux slack avoid T1, aux slack avoid T2) of
(k, 1) => if slack andalso k = 0 then 0 else 1
| (0, _) => 0
| (_, 0) => 0
| (k1, k2) =>
if k1 >= max orelse k2 >= max then max
else Int.min (max, Integer.pow k2 k1))
| Type (\<^type_name>\<open>set\<close>, [T']) => aux slack avoid (T' --> \<^typ>\<open>bool\<close>)
| \<^typ>\<open>prop\<close> => 2
| \<^typ>\<open>bool\<close> => 2 (* optimization *)
| \<^typ>\<open>nat\<close> => 0 (* optimization *)
| Type ("Int.int", []) => 0 (* optimization *)
| Type (s, _) =>
(case free_constructors_of ctxt T of
constrs as _ :: _ =>
let
val constr_cards =
map (Integer.prod o map (aux slack (T :: avoid)) o binder_types o snd) constrs
in
if exists (curry (op =) 0) constr_cards then 0
else Int.min (max, Integer.sum constr_cards)
end
| [] =>
case Typedef.get_info ctxt s of
({abs_type, rep_type, ...}, _) :: _ =>
if not sound then
(* We cheat here by assuming that typedef types are infinite if
their underlying type is infinite. This is unsound in
general but it's hard to think of a realistic example where
this would not be the case. We are also slack with
representation types: If a representation type has the form
"sigma => tau", we consider it enough to check "sigma" for
infiniteness. *)
(case varify_and_instantiate_type ctxt
(Logic.varifyT_global abs_type) T
(Logic.varifyT_global rep_type)
|> aux true avoid of
0 => 0
| 1 => 1
| _ => default_card)
else
default_card
| [] => default_card)
| TFree _ =>
(* Very slightly unsound: Type variables are assumed not to be
constrained to cardinality 1. (In practice, the user would most
likely have used "unit" directly anyway.) *)
if not sound andalso default_card = 1 then 2 else default_card
| TVar _ => default_card
in Int.min (max, aux false [] T) end
fun is_type_surely_finite ctxt T = tiny_card_of_type ctxt true [] 0 T <> 0
fun is_type_surely_infinite ctxt sound infinite_Ts T =
tiny_card_of_type ctxt sound (map (rpair 0) infinite_Ts) 1 T = 0
(* Simple simplifications to ensure that sort annotations don't leave a trail of
spurious "True"s. *)
fun s_not \<^Const_>\<open>All T for \<open>Abs (s, T', t')\<close>\<close> = \<^Const>\<open>Ex T for \<open>Abs (s, T', s_not t')\<close>\<close>
| s_not \<^Const_>\<open>Ex T for \<open>Abs (s, T', t')\<close>\<close> = \<^Const>\<open>All T for \<open>Abs (s, T', s_not t')\<close>\<close>
| s_not \<^Const_>\<open>implies for t1 t2\<close> = \<^Const>\<open>conj for t1 \<open>s_not t2\<close>\<close>
| s_not \<^Const_>\<open>conj for t1 t2\<close> = \<^Const>\<open>disj for \<open>s_not t1\<close> \<open>s_not t2\<close>\<close>
| s_not \<^Const_>\<open>disj for t1 t2\<close> = \<^Const>\<open>conj for \<open>s_not t1\<close> \<open>s_not t2\<close>\<close>
| s_not \<^Const_>\<open>False\<close> = \<^Const>\<open>True\<close>
| s_not \<^Const_>\<open>True\<close> = \<^Const>\<open>False\<close>
| s_not \<^Const_>\<open>Not for t\<close> = t
| s_not t = \<^Const>\<open>Not for t\<close>
fun s_conj (\<^Const_>\<open>True\<close>, t2) = t2
| s_conj (t1, \<^Const_>\<open>True\<close>) = t1
| s_conj (\<^Const_>\<open>False\<close>, _) = \<^Const>\<open>False\<close>
| s_conj (_, \<^Const_>\<open>False\<close>) = \<^Const>\<open>False\<close>
| s_conj (t1, t2) = if t1 aconv t2 then t1 else HOLogic.mk_conj (t1, t2)
fun s_disj (\<^Const_>\<open>False\<close>, t2) = t2
| s_disj (t1, \<^Const_>\<open>False\<close>) = t1
| s_disj (\<^Const_>\<open>True\<close>, _) = \<^Const>\<open>True\<close>
| s_disj (_, \<^Const_>\<open>True\<close>) = \<^Const>\<open>True\<close>
| s_disj (t1, t2) = if t1 aconv t2 then t1 else HOLogic.mk_disj (t1, t2)
fun s_imp (\<^Const_>\<open>True\<close>, t2) = t2
| s_imp (t1, \<^Const_>\<open>False\<close>) = s_not t1
| s_imp (\<^Const_>\<open>False\<close>, _) = \<^Const>\<open>True\<close>
| s_imp (_, \<^Const_>\<open>True\<close>) = \<^Const>\<open>True\<close>
| s_imp p = HOLogic.mk_imp p
fun s_iff (\<^Const_>\<open>True\<close>, t2) = t2
| s_iff (t1, \<^Const_>\<open>True\<close>) = t1
| s_iff (\<^Const_>\<open>False\<close>, t2) = s_not t2
| s_iff (t1, \<^Const_>\<open>False\<close>) = s_not t1
| s_iff (t1, t2) = if t1 aconv t2 then \<^Const>\<open>True\<close> else HOLogic.eq_const HOLogic.boolT $ t1 $ t2
fun close_form t =
fold (fn ((s, i), T) => fn t' =>
Logic.all_const T $ Abs (s, T, abstract_over (Var ((s, i), T), t')))
(Term.add_vars t []) t
val hol_close_form_prefix = "ATP."
fun hol_close_form t =
fold (fn ((s, i), T) => fn t' =>
HOLogic.all_const T
$ Abs (hol_close_form_prefix ^ s, T,
abstract_over (Var ((s, i), T), t')))
(Term.add_vars t []) t
fun hol_open_form unprefix
(t as Const (\<^const_name>\<open>All\<close>, _) $ Abs (s, T, t')) =
(case try unprefix s of
SOME s =>
let
val names = Name.make_context (map fst (Term.add_var_names t' []))
val (s, _) = Name.variant s names
in hol_open_form unprefix (subst_bound (Var ((s, 0), T), t')) end
| NONE => t)
| hol_open_form _ t = t
fun eta_expand _ t 0 = t
| eta_expand Ts (Abs (s, T, t')) n =
Abs (s, T, eta_expand (T :: Ts) t' (n - 1))
| eta_expand Ts t n =
fold_rev (fn T => fn t' => Abs ("x" ^ nat_subscript n, T, t'))
(List.take (binder_types (fastype_of1 (Ts, t)), n))
(list_comb (incr_boundvars n t, map Bound (n - 1 downto 0)))
fun cong_extensionalize_term ctxt t =
if exists_Const (fn (s, _) => s = \<^const_name>\<open>Not\<close>) t then
t |> Skip_Proof.make_thm (Proof_Context.theory_of ctxt)
|> Meson.cong_extensionalize_thm ctxt
|> Thm.prop_of
else
t
fun is_fun_equality (\<^const_name>\<open>HOL.eq\<close>,
Type (_, [Type (\<^type_name>\<open>fun\<close>, _), _])) = true
| is_fun_equality _ = false
fun abs_extensionalize_term ctxt t =
if exists_Const is_fun_equality t then
t |> Thm.cterm_of ctxt |> Meson.abs_extensionalize_conv ctxt
|> Thm.prop_of |> Logic.dest_equals |> snd
else
t
fun unextensionalize_def t =
(case t of
\<^Const_>\<open>Trueprop for \<^Const_>\<open>HOL.eq _ for lhs rhs\<close>\<close> =>
(case strip_comb lhs of
(c as Const (_, T), args) =>
if forall is_Var args andalso not (has_duplicates (op =) args) then
\<^Const>\<open>Trueprop for \<^Const>\<open>HOL.eq T for c \<open>fold_rev lambda args rhs\<close>\<close>\<close>
else t
| _ => t)
| _ => t)
(* Converts an elim-rule into an equivalent theorem that does not have the
predicate variable. Leaves other theorems unchanged. We simply instantiate
the conclusion variable to "False". (Cf. "transform_elim_theorem" in
"Meson_Clausify".) *)
fun transform_elim_prop t =
case Logic.strip_imp_concl t of
\<^Const_>\<open>Trueprop for \<open>Var (z, \<^typ>\<open>bool\<close>)\<close>\<close> => subst_Vars [(z, \<^Const>\<open>False\<close>)] t
| Var (z, \<^Type>\<open>prop\<close>) => subst_Vars [(z, \<^prop>\<open>False\<close>)] t
| _ => t
fun specialize_type thy (s, T) t =
let
fun subst_for (Const (s', T')) =
if s = s' then
SOME (Sign.typ_match thy (T', T) Vartab.empty)
handle Type.TYPE_MATCH => NONE
else
NONE
| subst_for (t1 $ t2) = (case subst_for t1 of SOME x => SOME x | NONE => subst_for t2)
| subst_for (Abs (_, _, t')) = subst_for t'
| subst_for _ = NONE
in
(case subst_for t of
SOME subst => Envir.subst_term_types subst t
| NONE => raise Type.TYPE_MATCH)
end
fun strip_subgoal goal i ctxt =
let
val (t, (frees, params)) =
Logic.goal_params (Thm.prop_of goal) i
||> (map dest_Free #> Variable.variant_frees ctxt [] #> `(map Free))
val hyp_ts = t |> Logic.strip_assums_hyp |> map (curry subst_bounds frees)
val concl_t = t |> Logic.strip_assums_concl |> curry subst_bounds frees
in (rev params, hyp_ts, concl_t) end
fun extract_lambda_def dest_head (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ t $ u) =
let val (head, args) = strip_comb t in
(head |> dest_head |> fst,
fold_rev (fn t as Var ((s, _), T) =>
(fn u => Abs (s, T, abstract_over (t, u)))
| _ => raise Fail "expected \"Var\"") args u)
end
| extract_lambda_def _ _ = raise Fail "malformed lifted lambda"
fun short_thm_name ctxt th =
let
val long = Thm_Name.short (Thm.get_name_hint th)
val short = Long_Name.base_name long
in
(case try (singleton (Attrib.eval_thms ctxt)) (Facts.named short, []) of
SOME th' => if Thm.eq_thm_prop (th, th') then short else long
| _ => long)
end
val map_prod = Ctr_Sugar_Util.map_prod
(* Compare the length of a list with an integer n while traversing at most n
elements of the list. *)
fun compare_length_with [] n = if n < 0 then GREATER else if n = 0 then EQUAL else LESS
| compare_length_with (_ :: xs) n = if n <= 0 then GREATER else compare_length_with xs (n - 1)
end;