(* Title: TFL/thms
ID: $Id$
Author: Konrad Slind, Cambridge University Computer Laboratory
Copyright 1997 University of Cambridge
*)
structure Thms : Thms_sig =
struct
val WFREC_COROLLARY = get_thm WF_Rel.thy "tfl_wfrec"
val WF_INDUCTION_THM = get_thm WF_Rel.thy "tfl_wf_induct"
val CUT_LEMMA = get_thm WF_Rel.thy "tfl_cut_apply"
val CUT_DEF = cut_def
local val _ = goal HOL.thy "!P x. P x --> P (Eps P)"
val _ = by (strip_tac 1)
val _ = by (rtac selectI 1)
val _ = by (assume_tac 1)
in val SELECT_AX = result()
end;
(*-------------------------------------------------------------------------
* A useful congruence rule
*-------------------------------------------------------------------------*)
local val [p1,p2] = goal HOL.thy "(M = N) ==> \
\ (!!x. ((x = N) ==> (f x = g x))) ==> \
\ (Let M f = Let N g)";
val _ = by (simp_tac (HOL_ss addsimps[Let_def,p1]) 1);
val _ = by (rtac p2 1);
val _ = by (rtac refl 1);
in val LET_CONG = result() RS eq_reflection
end;
val COND_CONG = if_cong RS eq_reflection;
fun prove s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]);
val eqT = prove"(x = True) --> x"
val rev_eq_mp = prove"(x = y) --> y --> x"
val simp_thm = prove"(x-->y) --> (x = x') --> (x' --> y)"
end;