src/HOL/Induct/Comb.thy
author wenzelm
Mon, 03 Nov 1997 12:26:45 +0100
changeset 4092 9faf228771dc
parent 3309 992a25b24d0d
child 5102 8c782c25a11e
permissions -rw-r--r--
added simpset thy_data;

(*  Title:      HOL/ex/Comb.thy
    ID:         $Id$
    Author:     Lawrence C Paulson
    Copyright   1996  University of Cambridge

Combinatory Logic example: the Church-Rosser Theorem
Curiously, combinators do not include free variables.

Example taken from
    J. Camilleri and T. F. Melham.
    Reasoning with Inductively Defined Relations in the HOL Theorem Prover.
    Report 265, University of Cambridge Computer Laboratory, 1992.
*)


Comb = Arith +

(** Datatype definition of combinators S and K, with infixed application **)
datatype comb = K
              | S
              | "#" comb comb (infixl 90)

(** Inductive definition of contractions, -1->
             and (multi-step) reductions, --->
**)
consts
  contract  :: "(comb*comb) set"
  "-1->"    :: [comb,comb] => bool   (infixl 50)
  "--->"    :: [comb,comb] => bool   (infixl 50)

translations
  "x -1-> y" == "(x,y) : contract"
  "x ---> y" == "(x,y) : contract^*"

inductive contract
  intrs
    K     "K#x#y -1-> x"
    S     "S#x#y#z -1-> (x#z)#(y#z)"
    Ap1   "x-1->y ==> x#z -1-> y#z"
    Ap2   "x-1->y ==> z#x -1-> z#y"


(** Inductive definition of parallel contractions, =1=>
             and (multi-step) parallel reductions, ===>
**)
consts
  parcontract :: "(comb*comb) set"
  "=1=>"    :: [comb,comb] => bool   (infixl 50)
  "===>"    :: [comb,comb] => bool   (infixl 50)

translations
  "x =1=> y" == "(x,y) : parcontract"
  "x ===> y" == "(x,y) : parcontract^*"

inductive parcontract
  intrs
    refl  "x =1=> x"
    K     "K#x#y =1=> x"
    S     "S#x#y#z =1=> (x#z)#(y#z)"
    Ap    "[| x=1=>y;  z=1=>w |] ==> x#z =1=> y#w"


(*Misc definitions*)
constdefs
  I :: comb
  "I == S#K#K"

  (*confluence; Lambda/Commutation treats this more abstractly*)
  diamond   :: "('a * 'a)set => bool"	
  "diamond(r) == ALL x y. (x,y):r --> 
                  (ALL y'. (x,y'):r --> 
                    (EX z. (y,z):r & (y',z) : r))"

end