(* Title: HOLCF/IOA/meta_theory/Sequence.thy
ID: $Id$
Author: Olaf Müller
Sequences over flat domains with lifted elements.
*)
theory Sequence
imports Seq
begin
defaultsort type
types 'a Seq = "'a::type lift seq"
consts
Consq ::"'a => 'a Seq -> 'a Seq"
Filter ::"('a => bool) => 'a Seq -> 'a Seq"
Map ::"('a => 'b) => 'a Seq -> 'b Seq"
Forall ::"('a => bool) => 'a Seq => bool"
Last ::"'a Seq -> 'a lift"
Dropwhile ::"('a => bool) => 'a Seq -> 'a Seq"
Takewhile ::"('a => bool) => 'a Seq -> 'a Seq"
Zip ::"'a Seq -> 'b Seq -> ('a * 'b) Seq"
Flat ::"('a Seq) seq -> 'a Seq"
Filter2 ::"('a => bool) => 'a Seq -> 'a Seq"
syntax
"@Consq" ::"'a => 'a Seq => 'a Seq" ("(_/>>_)" [66,65] 65)
(* list Enumeration *)
"_totlist" :: "args => 'a Seq" ("[(_)!]")
"_partlist" :: "args => 'a Seq" ("[(_)?]")
syntax (xsymbols)
"@Consq" ::"'a => 'a Seq => 'a Seq" ("(_\<leadsto>_)" [66,65] 65)
translations
"a>>s" == "Consq a$s"
"[x, xs!]" == "x>>[xs!]"
"[x!]" == "x>>nil"
"[x, xs?]" == "x>>[xs?]"
"[x?]" == "x>>UU"
defs
Consq_def: "Consq a == LAM s. Def a ## s"
Filter_def: "Filter P == sfilter$(flift2 P)"
Map_def: "Map f == smap$(flift2 f)"
Forall_def: "Forall P == sforall (flift2 P)"
Last_def: "Last == slast"
Dropwhile_def: "Dropwhile P == sdropwhile$(flift2 P)"
Takewhile_def: "Takewhile P == stakewhile$(flift2 P)"
Flat_def: "Flat == sflat"
Zip_def:
"Zip == (fix$(LAM h t1 t2. case t1 of
nil => nil
| x##xs => (case t2 of
nil => UU
| y##ys => (case x of
UU => UU
| Def a => (case y of
UU => UU
| Def b => Def (a,b)##(h$xs$ys))))))"
Filter2_def: "Filter2 P == (fix$(LAM h t. case t of
nil => nil
| x##xs => (case x of UU => UU | Def y => (if P y
then x##(h$xs)
else h$xs))))"
declare andalso_and [simp]
declare andalso_or [simp]
subsection "recursive equations of operators"
subsubsection "Map"
lemma Map_UU: "Map f$UU =UU"
by (simp add: Map_def)
lemma Map_nil: "Map f$nil =nil"
by (simp add: Map_def)
lemma Map_cons: "Map f$(x>>xs)=(f x) >> Map f$xs"
by (simp add: Map_def Consq_def flift2_def)
subsubsection {* Filter *}
lemma Filter_UU: "Filter P$UU =UU"
by (simp add: Filter_def)
lemma Filter_nil: "Filter P$nil =nil"
by (simp add: Filter_def)
lemma Filter_cons:
"Filter P$(x>>xs)= (if P x then x>>(Filter P$xs) else Filter P$xs)"
by (simp add: Filter_def Consq_def flift2_def If_and_if)
subsubsection {* Forall *}
lemma Forall_UU: "Forall P UU"
by (simp add: Forall_def sforall_def)
lemma Forall_nil: "Forall P nil"
by (simp add: Forall_def sforall_def)
lemma Forall_cons: "Forall P (x>>xs)= (P x & Forall P xs)"
by (simp add: Forall_def sforall_def Consq_def flift2_def)
subsubsection {* Conc *}
lemma Conc_cons: "(x>>xs) @@ y = x>>(xs @@y)"
by (simp add: Consq_def)
subsubsection {* Takewhile *}
lemma Takewhile_UU: "Takewhile P$UU =UU"
by (simp add: Takewhile_def)
lemma Takewhile_nil: "Takewhile P$nil =nil"
by (simp add: Takewhile_def)
lemma Takewhile_cons:
"Takewhile P$(x>>xs)= (if P x then x>>(Takewhile P$xs) else nil)"
by (simp add: Takewhile_def Consq_def flift2_def If_and_if)
subsubsection {* DropWhile *}
lemma Dropwhile_UU: "Dropwhile P$UU =UU"
by (simp add: Dropwhile_def)
lemma Dropwhile_nil: "Dropwhile P$nil =nil"
by (simp add: Dropwhile_def)
lemma Dropwhile_cons:
"Dropwhile P$(x>>xs)= (if P x then Dropwhile P$xs else x>>xs)"
by (simp add: Dropwhile_def Consq_def flift2_def If_and_if)
subsubsection {* Last *}
lemma Last_UU: "Last$UU =UU"
by (simp add: Last_def)
lemma Last_nil: "Last$nil =UU"
by (simp add: Last_def)
lemma Last_cons: "Last$(x>>xs)= (if xs=nil then Def x else Last$xs)"
apply (simp add: Last_def Consq_def)
apply (rule_tac x="xs" in seq.casedist)
apply simp
apply simp_all
done
subsubsection {* Flat *}
lemma Flat_UU: "Flat$UU =UU"
by (simp add: Flat_def)
lemma Flat_nil: "Flat$nil =nil"
by (simp add: Flat_def)
lemma Flat_cons: "Flat$(x##xs)= x @@ (Flat$xs)"
by (simp add: Flat_def Consq_def)
subsubsection {* Zip *}
lemma Zip_unfold:
"Zip = (LAM t1 t2. case t1 of
nil => nil
| x##xs => (case t2 of
nil => UU
| y##ys => (case x of
UU => UU
| Def a => (case y of
UU => UU
| Def b => Def (a,b)##(Zip$xs$ys)))))"
apply (rule trans)
apply (rule fix_eq2)
apply (rule Zip_def)
apply (rule beta_cfun)
apply simp
done
lemma Zip_UU1: "Zip$UU$y =UU"
apply (subst Zip_unfold)
apply simp
done
lemma Zip_UU2: "x~=nil ==> Zip$x$UU =UU"
apply (subst Zip_unfold)
apply simp
apply (rule_tac x="x" in seq.casedist)
apply simp_all
done
lemma Zip_nil: "Zip$nil$y =nil"
apply (subst Zip_unfold)
apply simp
done
lemma Zip_cons_nil: "Zip$(x>>xs)$nil= UU"
apply (subst Zip_unfold)
apply (simp add: Consq_def)
done
lemma Zip_cons: "Zip$(x>>xs)$(y>>ys)= (x,y) >> Zip$xs$ys"
apply (rule trans)
apply (subst Zip_unfold)
apply simp
apply (simp add: Consq_def)
done
lemmas [simp del] =
sfilter_UU sfilter_nil sfilter_cons
smap_UU smap_nil smap_cons
sforall2_UU sforall2_nil sforall2_cons
slast_UU slast_nil slast_cons
stakewhile_UU stakewhile_nil stakewhile_cons
sdropwhile_UU sdropwhile_nil sdropwhile_cons
sflat_UU sflat_nil sflat_cons
szip_UU1 szip_UU2 szip_nil szip_cons_nil szip_cons
lemmas [simp] =
Filter_UU Filter_nil Filter_cons
Map_UU Map_nil Map_cons
Forall_UU Forall_nil Forall_cons
Last_UU Last_nil Last_cons
Conc_cons
Takewhile_UU Takewhile_nil Takewhile_cons
Dropwhile_UU Dropwhile_nil Dropwhile_cons
Zip_UU1 Zip_UU2 Zip_nil Zip_cons_nil Zip_cons
section "Cons"
lemma Consq_def2: "a>>s = (Def a)##s"
apply (simp add: Consq_def)
done
lemma Seq_exhaust: "x = UU | x = nil | (? a s. x = a >> s)"
apply (simp add: Consq_def2)
apply (cut_tac seq.exhaust)
apply (fast dest: not_Undef_is_Def [THEN iffD1])
done
lemma Seq_cases:
"!!P. [| x = UU ==> P; x = nil ==> P; !!a s. x = a >> s ==> P |] ==> P"
apply (cut_tac x="x" in Seq_exhaust)
apply (erule disjE)
apply simp
apply (erule disjE)
apply simp
apply (erule exE)+
apply simp
done
(*
fun Seq_case_tac s i = rule_tac x",s)] Seq_cases i
THEN hyp_subst_tac i THEN hyp_subst_tac (i+1) THEN hyp_subst_tac (i+2);
*)
(* on a>>s only simp_tac, as full_simp_tac is uncomplete and often causes errors *)
(*
fun Seq_case_simp_tac s i = Seq_case_tac s i THEN Asm_simp_tac (i+2)
THEN Asm_full_simp_tac (i+1)
THEN Asm_full_simp_tac i;
*)
lemma Cons_not_UU: "a>>s ~= UU"
apply (subst Consq_def2)
apply (rule seq.con_rews)
apply (rule Def_not_UU)
done
lemma Cons_not_less_UU: "~(a>>x) << UU"
apply (rule notI)
apply (drule antisym_less)
apply simp
apply (simp add: Cons_not_UU)
done
lemma Cons_not_less_nil: "~a>>s << nil"
apply (subst Consq_def2)
apply (rule seq.rews)
apply (rule Def_not_UU)
done
lemma Cons_not_nil: "a>>s ~= nil"
apply (subst Consq_def2)
apply (rule seq.rews)
done
lemma Cons_not_nil2: "nil ~= a>>s"
apply (simp add: Consq_def2)
done
lemma Cons_inject_eq: "(a>>s = b>>t) = (a = b & s = t)"
apply (simp only: Consq_def2)
apply (simp add: scons_inject_eq)
done
lemma Cons_inject_less_eq: "(a>>s<<b>>t) = (a = b & s<<t)"
apply (simp add: Consq_def2)
apply (simp add: seq.inverts)
done
lemma seq_take_Cons: "seq_take (Suc n)$(a>>x) = a>> (seq_take n$x)"
apply (simp add: Consq_def)
done
lemmas [simp] =
Cons_not_nil2 Cons_inject_eq Cons_inject_less_eq seq_take_Cons
Cons_not_UU Cons_not_less_UU Cons_not_less_nil Cons_not_nil
subsection "induction"
lemma Seq_induct:
"!! P. [| adm P; P UU; P nil; !! a s. P s ==> P (a>>s)|] ==> P x"
apply (erule (2) seq.ind)
apply (tactic {* def_tac 1 *})
apply (simp add: Consq_def)
done
lemma Seq_FinitePartial_ind:
"!! P.[|P UU;P nil; !! a s. P s ==> P(a>>s) |]
==> seq_finite x --> P x"
apply (erule (1) seq_finite_ind)
apply (tactic {* def_tac 1 *})
apply (simp add: Consq_def)
done
lemma Seq_Finite_ind:
"!! P.[| Finite x; P nil; !! a s. [| Finite s; P s|] ==> P (a>>s) |] ==> P x"
apply (erule (1) sfinite.induct)
apply (tactic {* def_tac 1 *})
apply (simp add: Consq_def)
done
(* rws are definitions to be unfolded for admissibility check *)
(*
fun Seq_induct_tac s rws i = rule_tac x",s)] Seq_induct i
THEN (REPEAT_DETERM (CHANGED (Asm_simp_tac (i+1))))
THEN simp add: rws) i;
fun Seq_Finite_induct_tac i = erule Seq_Finite_ind i
THEN (REPEAT_DETERM (CHANGED (Asm_simp_tac i)));
fun pair_tac s = rule_tac p",s)] PairE
THEN' hyp_subst_tac THEN' Simp_tac;
*)
(* induction on a sequence of pairs with pairsplitting and simplification *)
(*
fun pair_induct_tac s rws i =
rule_tac x",s)] Seq_induct i
THEN pair_tac "a" (i+3)
THEN (REPEAT_DETERM (CHANGED (Simp_tac (i+1))))
THEN simp add: rws) i;
*)
(* ------------------------------------------------------------------------------------ *)
subsection "HD,TL"
lemma HD_Cons [simp]: "HD$(x>>y) = Def x"
apply (simp add: Consq_def)
done
lemma TL_Cons [simp]: "TL$(x>>y) = y"
apply (simp add: Consq_def)
done
(* ------------------------------------------------------------------------------------ *)
subsection "Finite, Partial, Infinite"
lemma Finite_Cons [simp]: "Finite (a>>xs) = Finite xs"
apply (simp add: Consq_def2 Finite_cons)
done
lemma FiniteConc_1: "Finite (x::'a Seq) ==> Finite y --> Finite (x@@y)"
apply (erule Seq_Finite_ind, simp_all)
done
lemma FiniteConc_2:
"Finite (z::'a Seq) ==> !x y. z= x@@y --> (Finite x & Finite y)"
apply (erule Seq_Finite_ind)
(* nil*)
apply (intro strip)
apply (rule_tac x="x" in Seq_cases, simp_all)
(* cons *)
apply (intro strip)
apply (rule_tac x="x" in Seq_cases, simp_all)
apply (rule_tac x="y" in Seq_cases, simp_all)
done
lemma FiniteConc [simp]: "Finite(x@@y) = (Finite (x::'a Seq) & Finite y)"
apply (rule iffI)
apply (erule FiniteConc_2 [rule_format])
apply (rule refl)
apply (rule FiniteConc_1 [rule_format])
apply auto
done
lemma FiniteMap1: "Finite s ==> Finite (Map f$s)"
apply (erule Seq_Finite_ind, simp_all)
done
lemma FiniteMap2: "Finite s ==> ! t. (s = Map f$t) --> Finite t"
apply (erule Seq_Finite_ind)
apply (intro strip)
apply (rule_tac x="t" in Seq_cases, simp_all)
(* main case *)
apply auto
apply (rule_tac x="t" in Seq_cases, simp_all)
done
lemma Map2Finite: "Finite (Map f$s) = Finite s"
apply auto
apply (erule FiniteMap2 [rule_format])
apply (rule refl)
apply (erule FiniteMap1)
done
lemma FiniteFilter: "Finite s ==> Finite (Filter P$s)"
apply (erule Seq_Finite_ind, simp_all)
done
(* ----------------------------------------------------------------------------------- *)
subsection "admissibility"
(* Finite x is proven to be adm: Finite_flat shows that there are only chains of length one.
Then the assumption that an _infinite_ chain exists (from admI2) is set to a contradiction
to Finite_flat *)
lemma Finite_flat [rule_format]:
"!! (x:: 'a Seq). Finite x ==> !y. Finite (y:: 'a Seq) & x<<y --> x=y"
apply (erule Seq_Finite_ind)
apply (intro strip)
apply (erule conjE)
apply (erule nil_less_is_nil)
(* main case *)
apply auto
apply (rule_tac x="y" in Seq_cases)
apply auto
done
lemma adm_Finite [simp]: "adm(%(x:: 'a Seq).Finite x)"
apply (rule admI2)
apply (erule_tac x="0" in allE)
back
apply (erule exE)
apply (erule conjE)+
apply (rule_tac x="0" in allE)
apply assumption
apply (erule_tac x="j" in allE)
apply (cut_tac x="Y 0" and y="Y j" in Finite_flat)
(* Generates a contradiction in subgoal 3 *)
apply auto
done
(* ------------------------------------------------------------------------------------ *)
subsection "Conc"
lemma Conc_cong: "!! x::'a Seq. Finite x ==> ((x @@ y) = (x @@ z)) = (y = z)"
apply (erule Seq_Finite_ind, simp_all)
done
lemma Conc_assoc: "(x @@ y) @@ z = (x::'a Seq) @@ y @@ z"
apply (rule_tac x="x" in Seq_induct, simp_all)
done
lemma nilConc [simp]: "s@@ nil = s"
apply (rule_tac x="s" in seq.ind)
apply simp
apply simp
apply simp
apply simp
done
(* should be same as nil_is_Conc2 when all nils are turned to right side !! *)
lemma nil_is_Conc: "(nil = x @@ y) = ((x::'a Seq)= nil & y = nil)"
apply (rule_tac x="x" in Seq_cases)
apply auto
done
lemma nil_is_Conc2: "(x @@ y = nil) = ((x::'a Seq)= nil & y = nil)"
apply (rule_tac x="x" in Seq_cases)
apply auto
done
(* ------------------------------------------------------------------------------------ *)
subsection "Last"
lemma Finite_Last1: "Finite s ==> s~=nil --> Last$s~=UU"
apply (erule Seq_Finite_ind, simp_all)
done
lemma Finite_Last2: "Finite s ==> Last$s=UU --> s=nil"
apply (erule Seq_Finite_ind, simp_all)
apply fast
done
(* ------------------------------------------------------------------------------------ *)
subsection "Filter, Conc"
lemma FilterPQ: "Filter P$(Filter Q$s) = Filter (%x. P x & Q x)$s"
apply (rule_tac x="s" in Seq_induct, simp_all)
done
lemma FilterConc: "Filter P$(x @@ y) = (Filter P$x @@ Filter P$y)"
apply (simp add: Filter_def sfiltersconc)
done
(* ------------------------------------------------------------------------------------ *)
subsection "Map"
lemma MapMap: "Map f$(Map g$s) = Map (f o g)$s"
apply (rule_tac x="s" in Seq_induct, simp_all)
done
lemma MapConc: "Map f$(x@@y) = (Map f$x) @@ (Map f$y)"
apply (rule_tac x="x" in Seq_induct, simp_all)
done
lemma MapFilter: "Filter P$(Map f$x) = Map f$(Filter (P o f)$x)"
apply (rule_tac x="x" in Seq_induct, simp_all)
done
lemma nilMap: "nil = (Map f$s) --> s= nil"
apply (rule_tac x="s" in Seq_cases, simp_all)
done
lemma ForallMap: "Forall P (Map f$s) = Forall (P o f) s"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
(* ------------------------------------------------------------------------------------ *)
subsection "Forall"
lemma ForallPForallQ1: "Forall P ys & (! x. P x --> Q x) \
\ --> Forall Q ys"
apply (rule_tac x="ys" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemmas ForallPForallQ =
ForallPForallQ1 [THEN mp, OF conjI, OF _ allI, OF _ impI]
lemma Forall_Conc_impl: "(Forall P x & Forall P y) --> Forall P (x @@ y)"
apply (rule_tac x="x" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemma Forall_Conc [simp]:
"Finite x ==> Forall P (x @@ y) = (Forall P x & Forall P y)"
apply (erule Seq_Finite_ind, simp_all)
done
lemma ForallTL1: "Forall P s --> Forall P (TL$s)"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemmas ForallTL = ForallTL1 [THEN mp]
lemma ForallDropwhile1: "Forall P s --> Forall P (Dropwhile Q$s)"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemmas ForallDropwhile = ForallDropwhile1 [THEN mp]
(* only admissible in t, not if done in s *)
lemma Forall_prefix: "! s. Forall P s --> t<<s --> Forall P t"
apply (rule_tac x="t" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
apply (intro strip)
apply (rule_tac x="sa" in Seq_cases)
apply simp
apply auto
done
lemmas Forall_prefixclosed = Forall_prefix [rule_format]
lemma Forall_postfixclosed:
"[| Finite h; Forall P s; s= h @@ t |] ==> Forall P t"
apply auto
done
lemma ForallPFilterQR1:
"((! x. P x --> (Q x = R x)) & Forall P tr) --> Filter Q$tr = Filter R$tr"
apply (rule_tac x="tr" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemmas ForallPFilterQR = ForallPFilterQR1 [THEN mp, OF conjI, OF allI]
(* ------------------------------------------------------------------------------------- *)
subsection "Forall, Filter"
lemma ForallPFilterP: "Forall P (Filter P$x)"
apply (simp add: Filter_def Forall_def forallPsfilterP)
done
(* holds also in other direction, then equal to forallPfilterP *)
lemma ForallPFilterPid1: "Forall P x --> Filter P$x = x"
apply (rule_tac x="x" in Seq_induct)
apply (simp add: Forall_def sforall_def Filter_def)
apply simp_all
done
lemmas ForallPFilterPid = ForallPFilterPid1 [THEN mp]
(* holds also in other direction *)
lemma ForallnPFilterPnil1: "!! ys . Finite ys ==>
Forall (%x. ~P x) ys --> Filter P$ys = nil "
apply (erule Seq_Finite_ind, simp_all)
done
lemmas ForallnPFilterPnil = ForallnPFilterPnil1 [THEN mp]
(* holds also in other direction *)
lemma ForallnPFilterPUU1: "~Finite ys & Forall (%x. ~P x) ys \
\ --> Filter P$ys = UU "
apply (rule_tac x="ys" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemmas ForallnPFilterPUU = ForallnPFilterPUU1 [THEN mp, OF conjI]
(* inverse of ForallnPFilterPnil *)
lemma FilternPnilForallP1: "!! ys . Filter P$ys = nil -->
(Forall (%x. ~P x) ys & Finite ys)"
apply (rule_tac x="ys" in Seq_induct)
(* adm *)
apply (simp add: seq.compacts Forall_def sforall_def)
(* base cases *)
apply simp
apply simp
(* main case *)
apply simp
done
lemmas FilternPnilForallP = FilternPnilForallP1 [THEN mp]
(* inverse of ForallnPFilterPUU. proved apply 2 lemmas because of adm problems *)
lemma FilterUU_nFinite_lemma1: "Finite ys ==> Filter P$ys ~= UU"
apply (erule Seq_Finite_ind, simp_all)
done
lemma FilterUU_nFinite_lemma2: "~ Forall (%x. ~P x) ys --> Filter P$ys ~= UU"
apply (rule_tac x="ys" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemma FilternPUUForallP:
"Filter P$ys = UU ==> (Forall (%x. ~P x) ys & ~Finite ys)"
apply (rule conjI)
apply (cut_tac FilterUU_nFinite_lemma2 [THEN mp, COMP rev_contrapos])
apply auto
apply (blast dest!: FilterUU_nFinite_lemma1)
done
lemma ForallQFilterPnil:
"!! Q P.[| Forall Q ys; Finite ys; !!x. Q x ==> ~P x|]
==> Filter P$ys = nil"
apply (erule ForallnPFilterPnil)
apply (erule ForallPForallQ)
apply auto
done
lemma ForallQFilterPUU:
"!! Q P. [| ~Finite ys; Forall Q ys; !!x. Q x ==> ~P x|]
==> Filter P$ys = UU "
apply (erule ForallnPFilterPUU)
apply (erule ForallPForallQ)
apply auto
done
(* ------------------------------------------------------------------------------------- *)
subsection "Takewhile, Forall, Filter"
lemma ForallPTakewhileP [simp]: "Forall P (Takewhile P$x)"
apply (simp add: Forall_def Takewhile_def sforallPstakewhileP)
done
lemma ForallPTakewhileQ [simp]:
"!! P. [| !!x. Q x==> P x |] ==> Forall P (Takewhile Q$x)"
apply (rule ForallPForallQ)
apply (rule ForallPTakewhileP)
apply auto
done
lemma FilterPTakewhileQnil [simp]:
"!! Q P.[| Finite (Takewhile Q$ys); !!x. Q x ==> ~P x |] \
\ ==> Filter P$(Takewhile Q$ys) = nil"
apply (erule ForallnPFilterPnil)
apply (rule ForallPForallQ)
apply (rule ForallPTakewhileP)
apply auto
done
lemma FilterPTakewhileQid [simp]:
"!! Q P. [| !!x. Q x ==> P x |] ==> \
\ Filter P$(Takewhile Q$ys) = (Takewhile Q$ys)"
apply (rule ForallPFilterPid)
apply (rule ForallPForallQ)
apply (rule ForallPTakewhileP)
apply auto
done
lemma Takewhile_idempotent: "Takewhile P$(Takewhile P$s) = Takewhile P$s"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemma ForallPTakewhileQnP [simp]:
"Forall P s --> Takewhile (%x. Q x | (~P x))$s = Takewhile Q$s"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemma ForallPDropwhileQnP [simp]:
"Forall P s --> Dropwhile (%x. Q x | (~P x))$s = Dropwhile Q$s"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemma TakewhileConc1:
"Forall P s --> Takewhile P$(s @@ t) = s @@ (Takewhile P$t)"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemmas TakewhileConc = TakewhileConc1 [THEN mp]
lemma DropwhileConc1:
"Finite s ==> Forall P s --> Dropwhile P$(s @@ t) = Dropwhile P$t"
apply (erule Seq_Finite_ind, simp_all)
done
lemmas DropwhileConc = DropwhileConc1 [THEN mp]
(* ----------------------------------------------------------------------------------- *)
subsection "coinductive characterizations of Filter"
lemma divide_Seq_lemma:
"HD$(Filter P$y) = Def x
--> y = ((Takewhile (%x. ~P x)$y) @@ (x >> TL$(Dropwhile (%a.~P a)$y)))
& Finite (Takewhile (%x. ~ P x)$y) & P x"
(* FIX: pay attention: is only admissible with chain-finite package to be added to
adm test and Finite f x admissibility *)
apply (rule_tac x="y" in Seq_induct)
apply (simp add: adm_subst [OF _ adm_Finite])
apply simp
apply simp
apply (case_tac "P a")
apply simp
apply blast
(* ~ P a *)
apply simp
done
lemma divide_Seq: "(x>>xs) << Filter P$y
==> y = ((Takewhile (%a. ~ P a)$y) @@ (x >> TL$(Dropwhile (%a.~P a)$y)))
& Finite (Takewhile (%a. ~ P a)$y) & P x"
apply (rule divide_Seq_lemma [THEN mp])
apply (drule_tac f="HD" and x="x>>xs" in monofun_cfun_arg)
apply simp
done
lemma nForall_HDFilter:
"~Forall P y --> (? x. HD$(Filter (%a. ~P a)$y) = Def x)"
(* Pay attention: is only admissible with chain-finite package to be added to
adm test *)
apply (rule_tac x="y" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemma divide_Seq2: "~Forall P y
==> ? x. y= (Takewhile P$y @@ (x >> TL$(Dropwhile P$y))) &
Finite (Takewhile P$y) & (~ P x)"
apply (drule nForall_HDFilter [THEN mp])
apply safe
apply (rule_tac x="x" in exI)
apply (cut_tac P1="%x. ~ P x" in divide_Seq_lemma [THEN mp])
apply auto
done
lemma divide_Seq3: "~Forall P y
==> ? x bs rs. y= (bs @@ (x>>rs)) & Finite bs & Forall P bs & (~ P x)"
apply (drule divide_Seq2)
(*Auto_tac no longer proves it*)
apply fastsimp
done
lemmas [simp] = FilterPQ FilterConc Conc_cong
(* ------------------------------------------------------------------------------------- *)
subsection "take_lemma"
lemma seq_take_lemma: "(!n. seq_take n$x = seq_take n$x') = (x = x')"
apply (rule iffI)
apply (rule seq.take_lemmas)
apply auto
done
lemma take_reduction1:
" ! n. ((! k. k < n --> seq_take k$y1 = seq_take k$y2)
--> seq_take n$(x @@ (t>>y1)) = seq_take n$(x @@ (t>>y2)))"
apply (rule_tac x="x" in Seq_induct)
apply simp_all
apply (intro strip)
apply (case_tac "n")
apply auto
apply (case_tac "n")
apply auto
done
lemma take_reduction:
"!! n.[| x=y; s=t; !! k. k<n ==> seq_take k$y1 = seq_take k$y2|]
==> seq_take n$(x @@ (s>>y1)) = seq_take n$(y @@ (t>>y2))"
apply (auto intro!: take_reduction1 [rule_format])
done
(* ------------------------------------------------------------------
take-lemma and take_reduction for << instead of =
------------------------------------------------------------------ *)
lemma take_reduction_less1:
" ! n. ((! k. k < n --> seq_take k$y1 << seq_take k$y2)
--> seq_take n$(x @@ (t>>y1)) << seq_take n$(x @@ (t>>y2)))"
apply (rule_tac x="x" in Seq_induct)
apply simp_all
apply (intro strip)
apply (case_tac "n")
apply auto
apply (case_tac "n")
apply auto
done
lemma take_reduction_less:
"!! n.[| x=y; s=t;!! k. k<n ==> seq_take k$y1 << seq_take k$y2|]
==> seq_take n$(x @@ (s>>y1)) << seq_take n$(y @@ (t>>y2))"
apply (auto intro!: take_reduction_less1 [rule_format])
done
lemma take_lemma_less1:
assumes "!! n. seq_take n$s1 << seq_take n$s2"
shows "s1<<s2"
apply (rule_tac t="s1" in seq.reach [THEN subst])
apply (rule_tac t="s2" in seq.reach [THEN subst])
apply (rule fix_def2 [THEN ssubst])
apply (subst contlub_cfun_fun)
apply (rule chain_iterate)
apply (subst contlub_cfun_fun)
apply (rule chain_iterate)
apply (rule lub_mono)
apply (rule chain_iterate [THEN ch2ch_Rep_CFunL])
apply (rule chain_iterate [THEN ch2ch_Rep_CFunL])
apply (rule allI)
apply (rule prems [unfolded seq.take_def])
done
lemma take_lemma_less: "(!n. seq_take n$x << seq_take n$x') = (x << x')"
apply (rule iffI)
apply (rule take_lemma_less1)
apply auto
apply (erule monofun_cfun_arg)
done
(* ------------------------------------------------------------------
take-lemma proof principles
------------------------------------------------------------------ *)
lemma take_lemma_principle1:
"!! Q. [|!! s. [| Forall Q s; A s |] ==> (f s) = (g s) ;
!! s1 s2 y. [| Forall Q s1; Finite s1; ~ Q y; A (s1 @@ y>>s2)|]
==> (f (s1 @@ y>>s2)) = (g (s1 @@ y>>s2)) |]
==> A x --> (f x)=(g x)"
apply (case_tac "Forall Q x")
apply (auto dest!: divide_Seq3)
done
lemma take_lemma_principle2:
"!! Q. [|!! s. [| Forall Q s; A s |] ==> (f s) = (g s) ;
!! s1 s2 y. [| Forall Q s1; Finite s1; ~ Q y; A (s1 @@ y>>s2)|]
==> ! n. seq_take n$(f (s1 @@ y>>s2))
= seq_take n$(g (s1 @@ y>>s2)) |]
==> A x --> (f x)=(g x)"
apply (case_tac "Forall Q x")
apply (auto dest!: divide_Seq3)
apply (rule seq.take_lemmas)
apply auto
done
(* Note: in the following proofs the ordering of proof steps is very
important, as otherwise either (Forall Q s1) would be in the IH as
assumption (then rule useless) or it is not possible to strengthen
the IH apply doing a forall closure of the sequence t (then rule also useless).
This is also the reason why the induction rule (nat_less_induct or nat_induct) has to
to be imbuilt into the rule, as induction has to be done early and the take lemma
has to be used in the trivial direction afterwards for the (Forall Q x) case. *)
lemma take_lemma_induct:
"!! Q. [|!! s. [| Forall Q s; A s |] ==> (f s) = (g s) ;
!! s1 s2 y n. [| ! t. A t --> seq_take n$(f t) = seq_take n$(g t);
Forall Q s1; Finite s1; ~ Q y; A (s1 @@ y>>s2) |]
==> seq_take (Suc n)$(f (s1 @@ y>>s2))
= seq_take (Suc n)$(g (s1 @@ y>>s2)) |]
==> A x --> (f x)=(g x)"
apply (rule impI)
apply (rule seq.take_lemmas)
apply (rule mp)
prefer 2 apply assumption
apply (rule_tac x="x" in spec)
apply (rule nat_induct)
apply simp
apply (rule allI)
apply (case_tac "Forall Q xa")
apply (force intro!: seq_take_lemma [THEN iffD2, THEN spec])
apply (auto dest!: divide_Seq3)
done
lemma take_lemma_less_induct:
"!! Q. [|!! s. [| Forall Q s; A s |] ==> (f s) = (g s) ;
!! s1 s2 y n. [| ! t m. m < n --> A t --> seq_take m$(f t) = seq_take m$(g t);
Forall Q s1; Finite s1; ~ Q y; A (s1 @@ y>>s2) |]
==> seq_take n$(f (s1 @@ y>>s2))
= seq_take n$(g (s1 @@ y>>s2)) |]
==> A x --> (f x)=(g x)"
apply (rule impI)
apply (rule seq.take_lemmas)
apply (rule mp)
prefer 2 apply assumption
apply (rule_tac x="x" in spec)
apply (rule nat_less_induct)
apply (rule allI)
apply (case_tac "Forall Q xa")
apply (force intro!: seq_take_lemma [THEN iffD2, THEN spec])
apply (auto dest!: divide_Seq3)
done
lemma take_lemma_in_eq_out:
"!! Q. [| A UU ==> (f UU) = (g UU) ;
A nil ==> (f nil) = (g nil) ;
!! s y n. [| ! t. A t --> seq_take n$(f t) = seq_take n$(g t);
A (y>>s) |]
==> seq_take (Suc n)$(f (y>>s))
= seq_take (Suc n)$(g (y>>s)) |]
==> A x --> (f x)=(g x)"
apply (rule impI)
apply (rule seq.take_lemmas)
apply (rule mp)
prefer 2 apply assumption
apply (rule_tac x="x" in spec)
apply (rule nat_induct)
apply simp
apply (rule allI)
apply (rule_tac x="xa" in Seq_cases)
apply simp_all
done
(* ------------------------------------------------------------------------------------ *)
subsection "alternative take_lemma proofs"
(* --------------------------------------------------------------- *)
(* Alternative Proof of FilterPQ *)
(* --------------------------------------------------------------- *)
declare FilterPQ [simp del]
(* In general: How to do this case without the same adm problems
as for the entire proof ? *)
lemma Filter_lemma1: "Forall (%x.~(P x & Q x)) s
--> Filter P$(Filter Q$s) =
Filter (%x. P x & Q x)$s"
apply (rule_tac x="s" in Seq_induct)
apply (simp add: Forall_def sforall_def)
apply simp_all
done
lemma Filter_lemma2: "Finite s ==>
(Forall (%x. (~P x) | (~ Q x)) s
--> Filter P$(Filter Q$s) = nil)"
apply (erule Seq_Finite_ind, simp_all)
done
lemma Filter_lemma3: "Finite s ==>
Forall (%x. (~P x) | (~ Q x)) s
--> Filter (%x. P x & Q x)$s = nil"
apply (erule Seq_Finite_ind, simp_all)
done
lemma FilterPQ_takelemma: "Filter P$(Filter Q$s) = Filter (%x. P x & Q x)$s"
apply (rule_tac A1="%x. True" and
Q1="%x.~(P x & Q x)" and x1="s" in
take_lemma_induct [THEN mp])
(* better support for A = %x. True *)
apply (simp add: Filter_lemma1)
apply (simp add: Filter_lemma2 Filter_lemma3)
apply simp
done
declare FilterPQ [simp]
(* --------------------------------------------------------------- *)
(* Alternative Proof of MapConc *)
(* --------------------------------------------------------------- *)
lemma MapConc_takelemma: "Map f$(x@@y) = (Map f$x) @@ (Map f$y)"
apply (rule_tac A1="%x. True" and x1="x" in
take_lemma_in_eq_out [THEN mp])
apply auto
done
ML {* use_legacy_bindings (the_context ()) *}
end