(* Title: HOL/RelPow.ML
ID: $Id$
Author: Tobias Nipkow
Copyright 1996 TU Muenchen
*)
open RelPow;
goal RelPow.thy "!!R:: ('a*'a)set. R^1 = R";
by (Simp_tac 1);
qed "rel_pow_1";
Addsimps [rel_pow_1];
goal RelPow.thy "(x,x) : R^0";
by (Simp_tac 1);
qed "rel_pow_0_I";
goal RelPow.thy "!!R. [| (x,y) : R^n; (y,z):R |] ==> (x,z):R^(Suc n)";
by (Simp_tac 1);
by (Blast_tac 1);
qed "rel_pow_Suc_I";
goal RelPow.thy "!z. (x,y) : R --> (y,z):R^n --> (x,z):R^(Suc n)";
by (nat_ind_tac "n" 1);
by (Simp_tac 1);
by (Asm_full_simp_tac 1);
by (Blast_tac 1);
qed_spec_mp "rel_pow_Suc_I2";
goal RelPow.thy "!!R. [| (x,y) : R^0; x=y ==> P |] ==> P";
by (Asm_full_simp_tac 1);
qed "rel_pow_0_E";
val [major,minor] = goal RelPow.thy
"[| (x,z) : R^(Suc n); !!y. [| (x,y) : R^n; (y,z) : R |] ==> P |] ==> P";
by (cut_facts_tac [major] 1);
by (Asm_full_simp_tac 1);
by (blast_tac (claset() addIs [minor]) 1);
qed "rel_pow_Suc_E";
val [p1,p2,p3] = goal RelPow.thy
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
\ !!y m. [| n = Suc m; (x,y) : R^m; (y,z) : R |] ==> P \
\ |] ==> P";
by (res_inst_tac [("n","n")] natE 1);
by (cut_facts_tac [p1] 1);
by (asm_full_simp_tac (simpset() addsimps [p2]) 1);
by (cut_facts_tac [p1] 1);
by (Asm_full_simp_tac 1);
by (etac compEpair 1);
by (REPEAT(ares_tac [p3] 1));
qed "rel_pow_E";
goal RelPow.thy "!x z. (x,z):R^(Suc n) --> (? y. (x,y):R & (y,z):R^n)";
by (nat_ind_tac "n" 1);
by (blast_tac (claset() addIs [rel_pow_0_I] addEs [rel_pow_0_E,rel_pow_Suc_E]) 1);
by (blast_tac (claset() addIs [rel_pow_Suc_I] addEs[rel_pow_0_E,rel_pow_Suc_E]) 1);
qed_spec_mp "rel_pow_Suc_D2";
goal RelPow.thy
"!x y z. (x,y) : R^n & (y,z) : R --> (? w. (x,w) : R & (w,z) : R^n)";
by (nat_ind_tac "n" 1);
by (fast_tac (claset() addss (simpset())) 1);
by (fast_tac (claset() addss (simpset())) 1);
qed_spec_mp "rel_pow_Suc_D2'";
val [p1,p2,p3] = goal RelPow.thy
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
\ !!y m. [| n = Suc m; (x,y) : R; (y,z) : R^m |] ==> P \
\ |] ==> P";
by (res_inst_tac [("n","n")] natE 1);
by (cut_facts_tac [p1] 1);
by (asm_full_simp_tac (simpset() addsimps [p2]) 1);
by (cut_facts_tac [p1] 1);
by (Asm_full_simp_tac 1);
by (etac compEpair 1);
by (dtac (conjI RS rel_pow_Suc_D2') 1);
by (assume_tac 1);
by (etac exE 1);
by (etac p3 1);
by (etac conjunct1 1);
by (etac conjunct2 1);
qed "rel_pow_E2";
goal RelPow.thy "!!p. p:R^* ==> p : (UN n. R^n)";
by (split_all_tac 1);
by (etac rtrancl_induct 1);
by (ALLGOALS (blast_tac (claset() addIs [rel_pow_0_I,rel_pow_Suc_I])));
qed "rtrancl_imp_UN_rel_pow";
goal RelPow.thy "!y. (x,y):R^n --> (x,y):R^*";
by (nat_ind_tac "n" 1);
by (blast_tac (claset() addIs [rtrancl_refl] addEs [rel_pow_0_E]) 1);
by (blast_tac (claset() addEs [rel_pow_Suc_E]
addIs [rtrancl_into_rtrancl]) 1);
val lemma = result() RS spec RS mp;
goal RelPow.thy "!!p. p:R^n ==> p:R^*";
by (split_all_tac 1);
by (etac lemma 1);
qed "rel_pow_imp_rtrancl";
goal RelPow.thy "R^* = (UN n. R^n)";
by (blast_tac (claset() addIs [rtrancl_imp_UN_rel_pow, rel_pow_imp_rtrancl]) 1);
qed "rtrancl_is_UN_rel_pow";