(* Title: HOL/Imperative_HOL/ex/Imperative_Reverse.thy
Author: Lukas Bulwahn, TU Muenchen
*)
header {* An imperative in-place reversal on arrays *}
theory Imperative_Reverse
imports "~~/src/HOL/Imperative_HOL/Imperative_HOL" Subarray
begin
hide_const (open) swap rev
fun swap :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> unit Heap" where
"swap a i j = (do
x \<leftarrow> nth a i;
y \<leftarrow> nth a j;
upd i y a;
upd j x a;
return ()
done)"
fun rev :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> unit Heap" where
"rev a i j = (if (i < j) then (do
swap a i j;
rev a (i + 1) (j - 1)
done)
else return ())"
notation (output) swap ("swap")
notation (output) rev ("rev")
declare swap.simps [simp del] rev.simps [simp del]
lemma swap_pointwise: assumes "crel (swap a i j) h h' r"
shows "get_array a h' ! k = (if k = i then get_array a h ! j
else if k = j then get_array a h ! i
else get_array a h ! k)"
using assms unfolding swap.simps
by (elim crel_elim_all)
(auto simp: Heap.length_def)
lemma rev_pointwise: assumes "crel (rev a i j) h h' r"
shows "get_array a h' ! k = (if k < i then get_array a h ! k
else if j < k then get_array a h ! k
else get_array a h ! (j - (k - i)))" (is "?P a i j h h'")
using assms proof (induct a i j arbitrary: h h' rule: rev.induct)
case (1 a i j h h'')
thus ?case
proof (cases "i < j")
case True
with 1[unfolded rev.simps[of a i j]]
obtain h' where
swp: "crel (swap a i j) h h' ()"
and rev: "crel (rev a (i + 1) (j - 1)) h' h'' ()"
by (auto elim: crel_elim_all)
from rev 1 True
have eq: "?P a (i + 1) (j - 1) h' h''" by auto
have "k < i \<or> i = k \<or> (i < k \<and> k < j) \<or> j = k \<or> j < k" by arith
with True show ?thesis
by (elim disjE) (auto simp: eq swap_pointwise[OF swp])
next
case False
with 1[unfolded rev.simps[of a i j]]
show ?thesis
by (cases "k = j") (auto elim: crel_elim_all)
qed
qed
lemma rev_length:
assumes "crel (rev a i j) h h' r"
shows "Heap.length a h = Heap.length a h'"
using assms
proof (induct a i j arbitrary: h h' rule: rev.induct)
case (1 a i j h h'')
thus ?case
proof (cases "i < j")
case True
with 1[unfolded rev.simps[of a i j]]
obtain h' where
swp: "crel (swap a i j) h h' ()"
and rev: "crel (rev a (i + 1) (j - 1)) h' h'' ()"
by (auto elim: crel_elim_all)
from swp rev 1 True show ?thesis
unfolding swap.simps
by (elim crel_elim_all) fastsimp
next
case False
with 1[unfolded rev.simps[of a i j]]
show ?thesis
by (auto elim: crel_elim_all)
qed
qed
lemma rev2_rev': assumes "crel (rev a i j) h h' u"
assumes "j < Heap.length a h"
shows "subarray i (j + 1) a h' = List.rev (subarray i (j + 1) a h)"
proof -
{
fix k
assume "k < Suc j - i"
with rev_pointwise[OF assms(1)] have "get_array a h' ! (i + k) = get_array a h ! (j - k)"
by auto
}
with assms(2) rev_length[OF assms(1)] show ?thesis
unfolding subarray_def Heap.length_def
by (auto simp add: length_sublist' rev_nth min_def nth_sublist' intro!: nth_equalityI)
qed
lemma rev2_rev:
assumes "crel (rev a 0 (Heap.length a h - 1)) h h' u"
shows "get_array a h' = List.rev (get_array a h)"
using rev2_rev'[OF assms] rev_length[OF assms] assms
by (cases "Heap.length a h = 0", auto simp add: Heap.length_def
subarray_def sublist'_all rev.simps[where j=0] elim!: crel_elim_all)
(drule sym[of "List.length (get_array a h)"], simp)
end