(* Title: HOL/HOLCF/Completion.thy
Author: Brian Huffman
*)
header {* Defining algebraic domains by ideal completion *}
theory Completion
imports Plain_HOLCF
begin
subsection {* Ideals over a preorder *}
locale preorder =
fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50)
assumes r_refl: "x \<preceq> x"
assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z"
begin
definition
ideal :: "'a set \<Rightarrow> bool" where
"ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and>
(\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))"
lemma idealI:
assumes "\<exists>x. x \<in> A"
assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
shows "ideal A"
unfolding ideal_def using assms by fast
lemma idealD1:
"ideal A \<Longrightarrow> \<exists>x. x \<in> A"
unfolding ideal_def by fast
lemma idealD2:
"\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z"
unfolding ideal_def by fast
lemma idealD3:
"\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"
unfolding ideal_def by fast
lemma ideal_principal: "ideal {x. x \<preceq> z}"
apply (rule idealI)
apply (rule_tac x=z in exI)
apply (fast intro: r_refl)
apply (rule_tac x=z in bexI, fast)
apply (fast intro: r_refl)
apply (fast intro: r_trans)
done
lemma ex_ideal: "\<exists>A. A \<in> {A. ideal A}"
by (fast intro: ideal_principal)
text {* The set of ideals is a cpo *}
lemma ideal_UN:
fixes A :: "nat \<Rightarrow> 'a set"
assumes ideal_A: "\<And>i. ideal (A i)"
assumes chain_A: "\<And>i j. i \<le> j \<Longrightarrow> A i \<subseteq> A j"
shows "ideal (\<Union>i. A i)"
apply (rule idealI)
apply (cut_tac idealD1 [OF ideal_A], fast)
apply (clarify, rename_tac i j)
apply (drule subsetD [OF chain_A [OF le_maxI1]])
apply (drule subsetD [OF chain_A [OF le_maxI2]])
apply (drule (1) idealD2 [OF ideal_A])
apply blast
apply clarify
apply (drule (1) idealD3 [OF ideal_A])
apply fast
done
lemma typedef_ideal_po:
fixes Abs :: "'a set \<Rightarrow> 'b::below"
assumes type: "type_definition Rep Abs {S. ideal S}"
assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
shows "OFCLASS('b, po_class)"
apply (intro_classes, unfold below)
apply (rule subset_refl)
apply (erule (1) subset_trans)
apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
apply (erule (1) subset_antisym)
done
lemma
fixes Abs :: "'a set \<Rightarrow> 'b::po"
assumes type: "type_definition Rep Abs {S. ideal S}"
assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
assumes S: "chain S"
shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))"
and typedef_ideal_rep_lub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
proof -
have 1: "ideal (\<Union>i. Rep (S i))"
apply (rule ideal_UN)
apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq])
apply (subst below [symmetric])
apply (erule chain_mono [OF S])
done
hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))"
by (simp add: type_definition.Abs_inverse [OF type])
show 3: "range S <<| Abs (\<Union>i. Rep (S i))"
apply (rule is_lubI)
apply (rule is_ubI)
apply (simp add: below 2, fast)
apply (simp add: below 2 is_ub_def, fast)
done
hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))"
by (rule lub_eqI)
show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
by (simp add: 4 2)
qed
lemma typedef_ideal_cpo:
fixes Abs :: "'a set \<Rightarrow> 'b::po"
assumes type: "type_definition Rep Abs {S. ideal S}"
assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
shows "OFCLASS('b, cpo_class)"
by (default, rule exI, erule typedef_ideal_lub [OF type below])
end
interpretation below: preorder "below :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool"
apply unfold_locales
apply (rule below_refl)
apply (erule (1) below_trans)
done
subsection {* Lemmas about least upper bounds *}
lemma is_ub_thelub_ex: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S"
apply (erule exE, drule is_lub_lub)
apply (drule is_lubD1)
apply (erule (1) is_ubD)
done
lemma is_lub_thelub_ex: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x"
by (erule exE, drule is_lub_lub, erule is_lubD2)
subsection {* Locale for ideal completion *}
locale ideal_completion = preorder +
fixes principal :: "'a::type \<Rightarrow> 'b::cpo"
fixes rep :: "'b::cpo \<Rightarrow> 'a::type set"
assumes ideal_rep: "\<And>x. ideal (rep x)"
assumes rep_lub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))"
assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}"
assumes belowI: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y"
assumes countable: "\<exists>f::'a \<Rightarrow> nat. inj f"
begin
lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y"
apply (frule bin_chain)
apply (drule rep_lub)
apply (simp only: lub_eqI [OF is_lub_bin_chain])
apply (rule subsetI, rule UN_I [where a=0], simp_all)
done
lemma below_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y"
by (rule iffI [OF rep_mono belowI])
lemma principal_below_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x"
unfolding below_def rep_principal
by (auto intro: r_refl elim: idealD3 [OF ideal_rep])
lemma principal_below_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b"
by (simp add: principal_below_iff_mem_rep rep_principal)
lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a"
unfolding po_eq_conv [where 'a='b] principal_below_iff ..
lemma eq_iff: "x = y \<longleftrightarrow> rep x = rep y"
unfolding po_eq_conv below_def by auto
lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b"
by (simp only: principal_below_iff)
lemma ch2ch_principal [simp]:
"\<forall>i. Y i \<preceq> Y (Suc i) \<Longrightarrow> chain (\<lambda>i. principal (Y i))"
by (simp add: chainI principal_mono)
subsubsection {* Principal ideals approximate all elements *}
lemma compact_principal [simp]: "compact (principal a)"
by (rule compactI2, simp add: principal_below_iff_mem_rep rep_lub)
text {* Construct a chain whose lub is the same as a given ideal *}
lemma obtain_principal_chain:
obtains Y where "\<forall>i. Y i \<preceq> Y (Suc i)" and "x = (\<Squnion>i. principal (Y i))"
proof -
obtain count :: "'a \<Rightarrow> nat" where inj: "inj count"
using countable ..
def enum \<equiv> "\<lambda>i. THE a. count a = i"
have enum_count [simp]: "\<And>x. enum (count x) = x"
unfolding enum_def by (simp add: inj_eq [OF inj])
def a \<equiv> "LEAST i. enum i \<in> rep x"
def b \<equiv> "\<lambda>i. LEAST j. enum j \<in> rep x \<and> \<not> enum j \<preceq> enum i"
def c \<equiv> "\<lambda>i j. LEAST k. enum k \<in> rep x \<and> enum i \<preceq> enum k \<and> enum j \<preceq> enum k"
def P \<equiv> "\<lambda>i. \<exists>j. enum j \<in> rep x \<and> \<not> enum j \<preceq> enum i"
def X \<equiv> "nat_rec a (\<lambda>n i. if P i then c i (b i) else i)"
have X_0: "X 0 = a" unfolding X_def by simp
have X_Suc: "\<And>n. X (Suc n) = (if P (X n) then c (X n) (b (X n)) else X n)"
unfolding X_def by simp
have a_mem: "enum a \<in> rep x"
unfolding a_def
apply (rule LeastI_ex)
apply (cut_tac ideal_rep [of x])
apply (drule idealD1)
apply (clarify, rename_tac a)
apply (rule_tac x="count a" in exI, simp)
done
have b: "\<And>i. P i \<Longrightarrow> enum i \<in> rep x
\<Longrightarrow> enum (b i) \<in> rep x \<and> \<not> enum (b i) \<preceq> enum i"
unfolding P_def b_def by (erule LeastI2_ex, simp)
have c: "\<And>i j. enum i \<in> rep x \<Longrightarrow> enum j \<in> rep x
\<Longrightarrow> enum (c i j) \<in> rep x \<and> enum i \<preceq> enum (c i j) \<and> enum j \<preceq> enum (c i j)"
unfolding c_def
apply (drule (1) idealD2 [OF ideal_rep], clarify)
apply (rule_tac a="count z" in LeastI2, simp, simp)
done
have X_mem: "\<And>n. enum (X n) \<in> rep x"
apply (induct_tac n)
apply (simp add: X_0 a_mem)
apply (clarsimp simp add: X_Suc, rename_tac n)
apply (simp add: b c)
done
have X_chain: "\<And>n. enum (X n) \<preceq> enum (X (Suc n))"
apply (clarsimp simp add: X_Suc r_refl)
apply (simp add: b c X_mem)
done
have less_b: "\<And>n i. n < b i \<Longrightarrow> enum n \<in> rep x \<Longrightarrow> enum n \<preceq> enum i"
unfolding b_def by (drule not_less_Least, simp)
have X_covers: "\<And>n. \<forall>k\<le>n. enum k \<in> rep x \<longrightarrow> enum k \<preceq> enum (X n)"
apply (induct_tac n)
apply (clarsimp simp add: X_0 a_def)
apply (drule_tac k=0 in Least_le, simp add: r_refl)
apply (clarsimp, rename_tac n k)
apply (erule le_SucE)
apply (rule r_trans [OF _ X_chain], simp)
apply (case_tac "P (X n)", simp add: X_Suc)
apply (rule_tac x="b (X n)" and y="Suc n" in linorder_cases)
apply (simp only: less_Suc_eq_le)
apply (drule spec, drule (1) mp, simp add: b X_mem)
apply (simp add: c X_mem)
apply (drule (1) less_b)
apply (erule r_trans)
apply (simp add: b c X_mem)
apply (simp add: X_Suc)
apply (simp add: P_def)
done
have 1: "\<forall>i. enum (X i) \<preceq> enum (X (Suc i))"
by (simp add: X_chain)
have 2: "x = (\<Squnion>n. principal (enum (X n)))"
apply (simp add: eq_iff rep_lub 1 rep_principal)
apply (auto, rename_tac a)
apply (subgoal_tac "\<exists>i. a = enum i", erule exE)
apply (rule_tac x=i in exI, simp add: X_covers)
apply (rule_tac x="count a" in exI, simp)
apply (erule idealD3 [OF ideal_rep])
apply (rule X_mem)
done
from 1 2 show ?thesis ..
qed
lemma principal_induct:
assumes adm: "adm P"
assumes P: "\<And>a. P (principal a)"
shows "P x"
apply (rule obtain_principal_chain [of x])
apply (simp add: admD [OF adm] P)
done
lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a"
apply (rule obtain_principal_chain [of x])
apply (drule adm_compact_neq [OF _ cont_id])
apply (subgoal_tac "chain (\<lambda>i. principal (Y i))")
apply (drule (2) admD2, fast, simp)
done
subsection {* Defining functions in terms of basis elements *}
definition
extension :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where
"extension = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))"
lemma extension_lemma:
fixes f :: "'a::type \<Rightarrow> 'c::cpo"
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
shows "\<exists>u. f ` rep x <<| u"
proof -
obtain Y where Y: "\<forall>i. Y i \<preceq> Y (Suc i)"
and x: "x = (\<Squnion>i. principal (Y i))"
by (rule obtain_principal_chain [of x])
have chain: "chain (\<lambda>i. f (Y i))"
by (rule chainI, simp add: f_mono Y)
have rep_x: "rep x = (\<Union>n. {a. a \<preceq> Y n})"
by (simp add: x rep_lub Y rep_principal)
have "f ` rep x <<| (\<Squnion>n. f (Y n))"
apply (rule is_lubI)
apply (rule ub_imageI, rename_tac a)
apply (clarsimp simp add: rep_x)
apply (drule f_mono)
apply (erule below_lub [OF chain])
apply (rule lub_below [OF chain])
apply (drule_tac x="Y n" in ub_imageD)
apply (simp add: rep_x, fast intro: r_refl)
apply assumption
done
thus ?thesis ..
qed
lemma extension_beta:
fixes f :: "'a::type \<Rightarrow> 'c::cpo"
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
shows "extension f\<cdot>x = lub (f ` rep x)"
unfolding extension_def
proof (rule beta_cfun)
have lub: "\<And>x. \<exists>u. f ` rep x <<| u"
using f_mono by (rule extension_lemma)
show cont: "cont (\<lambda>x. lub (f ` rep x))"
apply (rule contI2)
apply (rule monofunI)
apply (rule is_lub_thelub_ex [OF lub ub_imageI])
apply (rule is_ub_thelub_ex [OF lub imageI])
apply (erule (1) subsetD [OF rep_mono])
apply (rule is_lub_thelub_ex [OF lub ub_imageI])
apply (simp add: rep_lub, clarify)
apply (erule rev_below_trans [OF is_ub_thelub])
apply (erule is_ub_thelub_ex [OF lub imageI])
done
qed
lemma extension_principal:
fixes f :: "'a::type \<Rightarrow> 'c::cpo"
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
shows "extension f\<cdot>(principal a) = f a"
apply (subst extension_beta, erule f_mono)
apply (subst rep_principal)
apply (rule lub_eqI)
apply (rule is_lub_maximal)
apply (rule ub_imageI)
apply (simp add: f_mono)
apply (rule imageI)
apply (simp add: r_refl)
done
lemma extension_mono:
assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b"
assumes below: "\<And>a. f a \<sqsubseteq> g a"
shows "extension f \<sqsubseteq> extension g"
apply (rule cfun_belowI)
apply (simp only: extension_beta f_mono g_mono)
apply (rule is_lub_thelub_ex)
apply (rule extension_lemma, erule f_mono)
apply (rule ub_imageI, rename_tac a)
apply (rule below_trans [OF below])
apply (rule is_ub_thelub_ex)
apply (rule extension_lemma, erule g_mono)
apply (erule imageI)
done
lemma cont_extension:
assumes f_mono: "\<And>a b x. a \<preceq> b \<Longrightarrow> f x a \<sqsubseteq> f x b"
assumes f_cont: "\<And>a. cont (\<lambda>x. f x a)"
shows "cont (\<lambda>x. extension (\<lambda>a. f x a))"
apply (rule contI2)
apply (rule monofunI)
apply (rule extension_mono, erule f_mono, erule f_mono)
apply (erule cont2monofunE [OF f_cont])
apply (rule cfun_belowI)
apply (rule principal_induct, simp)
apply (simp only: contlub_cfun_fun)
apply (simp only: extension_principal f_mono)
apply (simp add: cont2contlubE [OF f_cont])
done
end
lemma (in preorder) typedef_ideal_completion:
fixes Abs :: "'a set \<Rightarrow> 'b::cpo"
assumes type: "type_definition Rep Abs {S. ideal S}"
assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
assumes principal: "\<And>a. principal a = Abs {b. b \<preceq> a}"
assumes countable: "\<exists>f::'a \<Rightarrow> nat. inj f"
shows "ideal_completion r principal Rep"
proof
interpret type_definition Rep Abs "{S. ideal S}" by fact
fix a b :: 'a and x y :: 'b and Y :: "nat \<Rightarrow> 'b"
show "ideal (Rep x)"
using Rep [of x] by simp
show "chain Y \<Longrightarrow> Rep (\<Squnion>i. Y i) = (\<Union>i. Rep (Y i))"
using type below by (rule typedef_ideal_rep_lub)
show "Rep (principal a) = {b. b \<preceq> a}"
by (simp add: principal Abs_inverse ideal_principal)
show "Rep x \<subseteq> Rep y \<Longrightarrow> x \<sqsubseteq> y"
by (simp only: below)
show "\<exists>f::'a \<Rightarrow> nat. inj f"
by (rule countable)
qed
end