(* Title: HOL/HOLCF/Domain_Aux.thy
Author: Brian Huffman
*)
header {* Domain package support *}
theory Domain_Aux
imports Map_Functions Fixrec
uses
("Tools/Domain/domain_take_proofs.ML")
("Tools/cont_consts.ML")
("Tools/cont_proc.ML")
("Tools/Domain/domain_constructors.ML")
("Tools/Domain/domain_induction.ML")
begin
subsection {* Continuous isomorphisms *}
text {* A locale for continuous isomorphisms *}
locale iso =
fixes abs :: "'a \<rightarrow> 'b"
fixes rep :: "'b \<rightarrow> 'a"
assumes abs_iso [simp]: "rep\<cdot>(abs\<cdot>x) = x"
assumes rep_iso [simp]: "abs\<cdot>(rep\<cdot>y) = y"
begin
lemma swap: "iso rep abs"
by (rule iso.intro [OF rep_iso abs_iso])
lemma abs_below: "(abs\<cdot>x \<sqsubseteq> abs\<cdot>y) = (x \<sqsubseteq> y)"
proof
assume "abs\<cdot>x \<sqsubseteq> abs\<cdot>y"
then have "rep\<cdot>(abs\<cdot>x) \<sqsubseteq> rep\<cdot>(abs\<cdot>y)" by (rule monofun_cfun_arg)
then show "x \<sqsubseteq> y" by simp
next
assume "x \<sqsubseteq> y"
then show "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" by (rule monofun_cfun_arg)
qed
lemma rep_below: "(rep\<cdot>x \<sqsubseteq> rep\<cdot>y) = (x \<sqsubseteq> y)"
by (rule iso.abs_below [OF swap])
lemma abs_eq: "(abs\<cdot>x = abs\<cdot>y) = (x = y)"
by (simp add: po_eq_conv abs_below)
lemma rep_eq: "(rep\<cdot>x = rep\<cdot>y) = (x = y)"
by (rule iso.abs_eq [OF swap])
lemma abs_strict: "abs\<cdot>\<bottom> = \<bottom>"
proof -
have "\<bottom> \<sqsubseteq> rep\<cdot>\<bottom>" ..
then have "abs\<cdot>\<bottom> \<sqsubseteq> abs\<cdot>(rep\<cdot>\<bottom>)" by (rule monofun_cfun_arg)
then have "abs\<cdot>\<bottom> \<sqsubseteq> \<bottom>" by simp
then show ?thesis by (rule bottomI)
qed
lemma rep_strict: "rep\<cdot>\<bottom> = \<bottom>"
by (rule iso.abs_strict [OF swap])
lemma abs_defin': "abs\<cdot>x = \<bottom> \<Longrightarrow> x = \<bottom>"
proof -
have "x = rep\<cdot>(abs\<cdot>x)" by simp
also assume "abs\<cdot>x = \<bottom>"
also note rep_strict
finally show "x = \<bottom>" .
qed
lemma rep_defin': "rep\<cdot>z = \<bottom> \<Longrightarrow> z = \<bottom>"
by (rule iso.abs_defin' [OF swap])
lemma abs_defined: "z \<noteq> \<bottom> \<Longrightarrow> abs\<cdot>z \<noteq> \<bottom>"
by (erule contrapos_nn, erule abs_defin')
lemma rep_defined: "z \<noteq> \<bottom> \<Longrightarrow> rep\<cdot>z \<noteq> \<bottom>"
by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms)
lemma abs_bottom_iff: "(abs\<cdot>x = \<bottom>) = (x = \<bottom>)"
by (auto elim: abs_defin' intro: abs_strict)
lemma rep_bottom_iff: "(rep\<cdot>x = \<bottom>) = (x = \<bottom>)"
by (rule iso.abs_bottom_iff [OF iso.swap]) (rule iso_axioms)
lemma casedist_rule: "rep\<cdot>x = \<bottom> \<or> P \<Longrightarrow> x = \<bottom> \<or> P"
by (simp add: rep_bottom_iff)
lemma compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x"
proof (unfold compact_def)
assume "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> y)"
with cont_Rep_cfun2
have "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> abs\<cdot>y)" by (rule adm_subst)
then show "adm (\<lambda>y. x \<notsqsubseteq> y)" using abs_below by simp
qed
lemma compact_rep_rev: "compact (rep\<cdot>x) \<Longrightarrow> compact x"
by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms)
lemma compact_abs: "compact x \<Longrightarrow> compact (abs\<cdot>x)"
by (rule compact_rep_rev) simp
lemma compact_rep: "compact x \<Longrightarrow> compact (rep\<cdot>x)"
by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms)
lemma iso_swap: "(x = abs\<cdot>y) = (rep\<cdot>x = y)"
proof
assume "x = abs\<cdot>y"
then have "rep\<cdot>x = rep\<cdot>(abs\<cdot>y)" by simp
then show "rep\<cdot>x = y" by simp
next
assume "rep\<cdot>x = y"
then have "abs\<cdot>(rep\<cdot>x) = abs\<cdot>y" by simp
then show "x = abs\<cdot>y" by simp
qed
end
subsection {* Proofs about take functions *}
text {*
This section contains lemmas that are used in a module that supports
the domain isomorphism package; the module contains proofs related
to take functions and the finiteness predicate.
*}
lemma deflation_abs_rep:
fixes abs and rep and d
assumes abs_iso: "\<And>x. rep\<cdot>(abs\<cdot>x) = x"
assumes rep_iso: "\<And>y. abs\<cdot>(rep\<cdot>y) = y"
shows "deflation d \<Longrightarrow> deflation (abs oo d oo rep)"
by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)
lemma deflation_chain_min:
assumes chain: "chain d"
assumes defl: "\<And>n. deflation (d n)"
shows "d m\<cdot>(d n\<cdot>x) = d (min m n)\<cdot>x"
proof (rule linorder_le_cases)
assume "m \<le> n"
with chain have "d m \<sqsubseteq> d n" by (rule chain_mono)
then have "d m\<cdot>(d n\<cdot>x) = d m\<cdot>x"
by (rule deflation_below_comp1 [OF defl defl])
moreover from `m \<le> n` have "min m n = m" by simp
ultimately show ?thesis by simp
next
assume "n \<le> m"
with chain have "d n \<sqsubseteq> d m" by (rule chain_mono)
then have "d m\<cdot>(d n\<cdot>x) = d n\<cdot>x"
by (rule deflation_below_comp2 [OF defl defl])
moreover from `n \<le> m` have "min m n = n" by simp
ultimately show ?thesis by simp
qed
lemma lub_ID_take_lemma:
assumes "chain t" and "(\<Squnion>n. t n) = ID"
assumes "\<And>n. t n\<cdot>x = t n\<cdot>y" shows "x = y"
proof -
have "(\<Squnion>n. t n\<cdot>x) = (\<Squnion>n. t n\<cdot>y)"
using assms(3) by simp
then have "(\<Squnion>n. t n)\<cdot>x = (\<Squnion>n. t n)\<cdot>y"
using assms(1) by (simp add: lub_distribs)
then show "x = y"
using assms(2) by simp
qed
lemma lub_ID_reach:
assumes "chain t" and "(\<Squnion>n. t n) = ID"
shows "(\<Squnion>n. t n\<cdot>x) = x"
using assms by (simp add: lub_distribs)
lemma lub_ID_take_induct:
assumes "chain t" and "(\<Squnion>n. t n) = ID"
assumes "adm P" and "\<And>n. P (t n\<cdot>x)" shows "P x"
proof -
from `chain t` have "chain (\<lambda>n. t n\<cdot>x)" by simp
from `adm P` this `\<And>n. P (t n\<cdot>x)` have "P (\<Squnion>n. t n\<cdot>x)" by (rule admD)
with `chain t` `(\<Squnion>n. t n) = ID` show "P x" by (simp add: lub_distribs)
qed
subsection {* Finiteness *}
text {*
Let a ``decisive'' function be a deflation that maps every input to
either itself or bottom. Then if a domain's take functions are all
decisive, then all values in the domain are finite.
*}
definition
decisive :: "('a::pcpo \<rightarrow> 'a) \<Rightarrow> bool"
where
"decisive d \<longleftrightarrow> (\<forall>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>)"
lemma decisiveI: "(\<And>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>) \<Longrightarrow> decisive d"
unfolding decisive_def by simp
lemma decisive_cases:
assumes "decisive d" obtains "d\<cdot>x = x" | "d\<cdot>x = \<bottom>"
using assms unfolding decisive_def by auto
lemma decisive_bottom: "decisive \<bottom>"
unfolding decisive_def by simp
lemma decisive_ID: "decisive ID"
unfolding decisive_def by simp
lemma decisive_ssum_map:
assumes f: "decisive f"
assumes g: "decisive g"
shows "decisive (ssum_map\<cdot>f\<cdot>g)"
apply (rule decisiveI, rename_tac s)
apply (case_tac s, simp_all)
apply (rule_tac x=x in decisive_cases [OF f], simp_all)
apply (rule_tac x=y in decisive_cases [OF g], simp_all)
done
lemma decisive_sprod_map:
assumes f: "decisive f"
assumes g: "decisive g"
shows "decisive (sprod_map\<cdot>f\<cdot>g)"
apply (rule decisiveI, rename_tac s)
apply (case_tac s, simp_all)
apply (rule_tac x=x in decisive_cases [OF f], simp_all)
apply (rule_tac x=y in decisive_cases [OF g], simp_all)
done
lemma decisive_abs_rep:
fixes abs rep
assumes iso: "iso abs rep"
assumes d: "decisive d"
shows "decisive (abs oo d oo rep)"
apply (rule decisiveI)
apply (rule_tac x="rep\<cdot>x" in decisive_cases [OF d])
apply (simp add: iso.rep_iso [OF iso])
apply (simp add: iso.abs_strict [OF iso])
done
lemma lub_ID_finite:
assumes chain: "chain d"
assumes lub: "(\<Squnion>n. d n) = ID"
assumes decisive: "\<And>n. decisive (d n)"
shows "\<exists>n. d n\<cdot>x = x"
proof -
have 1: "chain (\<lambda>n. d n\<cdot>x)" using chain by simp
have 2: "(\<Squnion>n. d n\<cdot>x) = x" using chain lub by (rule lub_ID_reach)
have "\<forall>n. d n\<cdot>x = x \<or> d n\<cdot>x = \<bottom>"
using decisive unfolding decisive_def by simp
hence "range (\<lambda>n. d n\<cdot>x) \<subseteq> {x, \<bottom>}"
by auto
hence "finite (range (\<lambda>n. d n\<cdot>x))"
by (rule finite_subset, simp)
with 1 have "finite_chain (\<lambda>n. d n\<cdot>x)"
by (rule finite_range_imp_finch)
then have "\<exists>n. (\<Squnion>n. d n\<cdot>x) = d n\<cdot>x"
unfolding finite_chain_def by (auto simp add: maxinch_is_thelub)
with 2 show "\<exists>n. d n\<cdot>x = x" by (auto elim: sym)
qed
lemma lub_ID_finite_take_induct:
assumes "chain d" and "(\<Squnion>n. d n) = ID" and "\<And>n. decisive (d n)"
shows "(\<And>n. P (d n\<cdot>x)) \<Longrightarrow> P x"
using lub_ID_finite [OF assms] by metis
subsection {* Proofs about constructor functions *}
text {* Lemmas for proving nchotomy rule: *}
lemma ex_one_bottom_iff:
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = P ONE"
by simp
lemma ex_up_bottom_iff:
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = (\<exists>x. P (up\<cdot>x))"
by (safe, case_tac x, auto)
lemma ex_sprod_bottom_iff:
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) =
(\<exists>x y. (P (:x, y:) \<and> x \<noteq> \<bottom>) \<and> y \<noteq> \<bottom>)"
by (safe, case_tac y, auto)
lemma ex_sprod_up_bottom_iff:
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) =
(\<exists>x y. P (:up\<cdot>x, y:) \<and> y \<noteq> \<bottom>)"
by (safe, case_tac y, simp, case_tac x, auto)
lemma ex_ssum_bottom_iff:
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) =
((\<exists>x. P (sinl\<cdot>x) \<and> x \<noteq> \<bottom>) \<or>
(\<exists>x. P (sinr\<cdot>x) \<and> x \<noteq> \<bottom>))"
by (safe, case_tac x, auto)
lemma exh_start: "p = \<bottom> \<or> (\<exists>x. p = x \<and> x \<noteq> \<bottom>)"
by auto
lemmas ex_bottom_iffs =
ex_ssum_bottom_iff
ex_sprod_up_bottom_iff
ex_sprod_bottom_iff
ex_up_bottom_iff
ex_one_bottom_iff
text {* Rules for turning nchotomy into exhaust: *}
lemma exh_casedist0: "\<lbrakk>R; R \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" (* like make_elim *)
by auto
lemma exh_casedist1: "((P \<or> Q \<Longrightarrow> R) \<Longrightarrow> S) \<equiv> (\<lbrakk>P \<Longrightarrow> R; Q \<Longrightarrow> R\<rbrakk> \<Longrightarrow> S)"
by rule auto
lemma exh_casedist2: "(\<exists>x. P x \<Longrightarrow> Q) \<equiv> (\<And>x. P x \<Longrightarrow> Q)"
by rule auto
lemma exh_casedist3: "(P \<and> Q \<Longrightarrow> R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> R)"
by rule auto
lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3
text {* Rules for proving constructor properties *}
lemmas con_strict_rules =
sinl_strict sinr_strict spair_strict1 spair_strict2
lemmas con_bottom_iff_rules =
sinl_bottom_iff sinr_bottom_iff spair_bottom_iff up_defined ONE_defined
lemmas con_below_iff_rules =
sinl_below sinr_below sinl_below_sinr sinr_below_sinl con_bottom_iff_rules
lemmas con_eq_iff_rules =
sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_bottom_iff_rules
lemmas sel_strict_rules =
cfcomp2 sscase1 sfst_strict ssnd_strict fup1
lemma sel_app_extra_rules:
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot>x) = \<bottom>"
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinl\<cdot>x) = x"
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinl\<cdot>x) = \<bottom>"
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinr\<cdot>x) = x"
"fup\<cdot>ID\<cdot>(up\<cdot>x) = x"
by (cases "x = \<bottom>", simp, simp)+
lemmas sel_app_rules =
sel_strict_rules sel_app_extra_rules
ssnd_spair sfst_spair up_defined spair_defined
lemmas sel_bottom_iff_rules =
cfcomp2 sfst_bottom_iff ssnd_bottom_iff
lemmas take_con_rules =
ssum_map_sinl' ssum_map_sinr' sprod_map_spair' u_map_up
deflation_strict deflation_ID ID1 cfcomp2
subsection {* ML setup *}
use "Tools/Domain/domain_take_proofs.ML"
use "Tools/cont_consts.ML"
use "Tools/cont_proc.ML"
use "Tools/Domain/domain_constructors.ML"
use "Tools/Domain/domain_induction.ML"
setup Domain_Take_Proofs.setup
end