(* Title: HOLCF/fun2.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for fun2.thy
*)
open Fun2;
(* for compatibility with old HOLCF-Version *)
qed_goal "inst_fun_po" thy "(op <<)=(%f g.!x. f x << g x)"
(fn prems =>
[
(fold_goals_tac [less_fun_def]),
(rtac refl 1)
]);
(* ------------------------------------------------------------------------ *)
(* Type 'a::term => 'b::pcpo is pointed *)
(* ------------------------------------------------------------------------ *)
qed_goal "minimal_fun" thy "(%z. UU) << x"
(fn prems =>
[
(simp_tac (simpset() addsimps [inst_fun_po,minimal]) 1)
]);
bind_thm ("UU_fun_def",minimal_fun RS minimal2UU RS sym);
qed_goal "least_fun" thy "? x::'a=>'b::pcpo.!y. x<<y"
(fn prems =>
[
(res_inst_tac [("x","(%z. UU)")] exI 1),
(rtac (minimal_fun RS allI) 1)
]);
(* ------------------------------------------------------------------------ *)
(* make the symbol << accessible for type fun *)
(* ------------------------------------------------------------------------ *)
qed_goal "less_fun" thy "(f1 << f2) = (! x. f1(x) << f2(x))"
(fn prems =>
[
(stac inst_fun_po 1),
(fold_goals_tac [less_fun_def]),
(rtac refl 1)
]);
(* ------------------------------------------------------------------------ *)
(* chains of functions yield chains in the po range *)
(* ------------------------------------------------------------------------ *)
qed_goal "ch2ch_fun" thy
"is_chain(S::nat=>('a=>'b::po)) ==> is_chain(% i. S(i)(x))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rewtac is_chain),
(rtac allI 1),
(rtac spec 1),
(rtac (less_fun RS subst) 1),
(etac allE 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* upper bounds of function chains yield upper bound in the po range *)
(* ------------------------------------------------------------------------ *)
qed_goal "ub2ub_fun" Fun2.thy
" range(S::nat=>('a::term => 'b::po)) <| u ==> range(%i. S i x) <| u(x)"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac ub_rangeI 1),
(rtac allI 1),
(rtac allE 1),
(rtac (less_fun RS subst) 1),
(etac (ub_rangeE RS spec) 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* Type 'a::term => 'b::pcpo is chain complete *)
(* ------------------------------------------------------------------------ *)
qed_goal "lub_fun" Fun2.thy
"is_chain(S::nat=>('a::term => 'b::cpo)) ==> \
\ range(S) <<| (% x. lub(range(% i. S(i)(x))))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac is_lubI 1),
(rtac conjI 1),
(rtac ub_rangeI 1),
(rtac allI 1),
(stac less_fun 1),
(rtac allI 1),
(rtac is_ub_thelub 1),
(etac ch2ch_fun 1),
(strip_tac 1),
(stac less_fun 1),
(rtac allI 1),
(rtac is_lub_thelub 1),
(etac ch2ch_fun 1),
(etac ub2ub_fun 1)
]);
bind_thm ("thelub_fun", lub_fun RS thelubI);
(* is_chain ?S1 ==> lub (range ?S1) = (%x. lub (range (%i. ?S1 i x))) *)
qed_goal "cpo_fun" Fun2.thy
"is_chain(S::nat=>('a::term => 'b::cpo)) ==> ? x. range(S) <<| x"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac exI 1),
(etac lub_fun 1)
]);