(* Title: HOLCF/Up1.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
*)
open Up1;
qed_goal "Abs_Up_inverse2" thy "Rep_Up (Abs_Up y) = y"
(fn prems =>
[
(simp_tac (simpset() addsimps [Up_def,Abs_Up_inverse]) 1)
]);
qed_goalw "Exh_Up" thy [Iup_def ]
"z = Abs_Up(Inl ()) | (? x. z = Iup x)"
(fn prems =>
[
(rtac (Rep_Up_inverse RS subst) 1),
(res_inst_tac [("s","Rep_Up z")] sumE 1),
(rtac disjI1 1),
(res_inst_tac [("f","Abs_Up")] arg_cong 1),
(rtac (unit_eq RS subst) 1),
(atac 1),
(rtac disjI2 1),
(rtac exI 1),
(res_inst_tac [("f","Abs_Up")] arg_cong 1),
(atac 1)
]);
qed_goal "inj_Abs_Up" thy "inj(Abs_Up)"
(fn prems =>
[
(rtac inj_inverseI 1),
(rtac Abs_Up_inverse2 1)
]);
qed_goal "inj_Rep_Up" thy "inj(Rep_Up)"
(fn prems =>
[
(rtac inj_inverseI 1),
(rtac Rep_Up_inverse 1)
]);
qed_goalw "inject_Iup" thy [Iup_def] "Iup x=Iup y ==> x=y"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac (inj_Inr RS injD) 1),
(rtac (inj_Abs_Up RS injD) 1),
(atac 1)
]);
qed_goalw "defined_Iup" thy [Iup_def] "Iup x~=Abs_Up(Inl ())"
(fn prems =>
[
(rtac notI 1),
(rtac notE 1),
(rtac Inl_not_Inr 1),
(rtac sym 1),
(etac (inj_Abs_Up RS injD) 1)
]);
qed_goal "upE" thy
"[| p=Abs_Up(Inl ()) ==> Q; !!x. p=Iup(x)==>Q|] ==>Q"
(fn prems =>
[
(rtac (Exh_Up RS disjE) 1),
(eresolve_tac prems 1),
(etac exE 1),
(eresolve_tac prems 1)
]);
qed_goalw "Ifup1" thy [Ifup_def]
"Ifup(f)(Abs_Up(Inl ()))=UU"
(fn prems =>
[
(stac Abs_Up_inverse2 1),
(stac sum_case_Inl 1),
(rtac refl 1)
]);
qed_goalw "Ifup2" thy [Ifup_def,Iup_def]
"Ifup(f)(Iup(x))=f`x"
(fn prems =>
[
(stac Abs_Up_inverse2 1),
(stac sum_case_Inr 1),
(rtac refl 1)
]);
val Up0_ss = (simpset_of Cfun3.thy) addsimps [Ifup1,Ifup2];
qed_goalw "less_up1a" thy [less_up_def]
"Abs_Up(Inl ())<< z"
(fn prems =>
[
(stac Abs_Up_inverse2 1),
(stac sum_case_Inl 1),
(rtac TrueI 1)
]);
qed_goalw "less_up1b" thy [Iup_def,less_up_def]
"~(Iup x) << (Abs_Up(Inl ()))"
(fn prems =>
[
(rtac notI 1),
(rtac iffD1 1),
(atac 2),
(stac Abs_Up_inverse2 1),
(stac Abs_Up_inverse2 1),
(stac sum_case_Inr 1),
(stac sum_case_Inl 1),
(rtac refl 1)
]);
qed_goalw "less_up1c" thy [Iup_def,less_up_def]
" (Iup x) << (Iup y)=(x<<y)"
(fn prems =>
[
(stac Abs_Up_inverse2 1),
(stac Abs_Up_inverse2 1),
(stac sum_case_Inr 1),
(stac sum_case_Inr 1),
(rtac refl 1)
]);
qed_goal "refl_less_up" thy "(p::'a u) << p"
(fn prems =>
[
(res_inst_tac [("p","p")] upE 1),
(hyp_subst_tac 1),
(rtac less_up1a 1),
(hyp_subst_tac 1),
(rtac (less_up1c RS iffD2) 1),
(rtac refl_less 1)
]);
qed_goal "antisym_less_up" thy
"!!p1.[|(p1::'a u) << p2;p2 << p1|] ==> p1=p2"
(fn _ =>
[
(res_inst_tac [("p","p1")] upE 1),
(hyp_subst_tac 1),
(res_inst_tac [("p","p2")] upE 1),
(etac sym 1),
(hyp_subst_tac 1),
(res_inst_tac [("P","(Iup x) << (Abs_Up(Inl ()))")] notE 1),
(rtac less_up1b 1),
(atac 1),
(hyp_subst_tac 1),
(res_inst_tac [("p","p2")] upE 1),
(hyp_subst_tac 1),
(res_inst_tac [("P","(Iup x) << (Abs_Up(Inl ()))")] notE 1),
(rtac less_up1b 1),
(atac 1),
(hyp_subst_tac 1),
(rtac arg_cong 1),
(rtac antisym_less 1),
(etac (less_up1c RS iffD1) 1),
(etac (less_up1c RS iffD1) 1)
]);
qed_goal "trans_less_up" thy
"[|(p1::'a u) << p2;p2 << p3|] ==> p1 << p3"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("p","p1")] upE 1),
(hyp_subst_tac 1),
(rtac less_up1a 1),
(hyp_subst_tac 1),
(res_inst_tac [("p","p2")] upE 1),
(hyp_subst_tac 1),
(rtac notE 1),
(rtac less_up1b 1),
(atac 1),
(hyp_subst_tac 1),
(res_inst_tac [("p","p3")] upE 1),
(hyp_subst_tac 1),
(rtac notE 1),
(rtac less_up1b 1),
(atac 1),
(hyp_subst_tac 1),
(rtac (less_up1c RS iffD2) 1),
(rtac trans_less 1),
(etac (less_up1c RS iffD1) 1),
(etac (less_up1c RS iffD1) 1)
]);