src/HOL/ex/Code_Binary_Nat_examples.thy
author wenzelm
Thu, 28 Mar 2019 21:24:55 +0100
changeset 70009 435fb018e8ee
parent 66453 cc19f7ca2ed6
permissions -rw-r--r--
"export_code ... file_prefix ..." is the preferred way to produce output within the logical file-system within the theory context, as well as session exports; "export_code ... file" is legacy, the empty name form has been discontinued; updated examples;

(*  Title:      HOL/ex/Code_Binary_Nat_examples.thy
    Author:     Florian Haftmann, TU Muenchen
*)

section \<open>Simple examples for natural numbers implemented in binary representation.\<close>

theory Code_Binary_Nat_examples
imports Complex_Main "HOL-Library.Code_Binary_Nat"
begin

fun to_n :: "nat \<Rightarrow> nat list"
where
  "to_n 0 = []"
| "to_n (Suc 0) = []"
| "to_n (Suc (Suc 0)) = []"
| "to_n (Suc n) = n # to_n n"

definition naive_prime :: "nat \<Rightarrow> bool"
where
  "naive_prime n \<longleftrightarrow> n \<ge> 2 \<and> filter (\<lambda>m. n mod m = 0) (to_n n) = []"

primrec fac :: "nat \<Rightarrow> nat"
where
  "fac 0 = 1"
| "fac (Suc n) = Suc n * fac n"

primrec harmonic :: "nat \<Rightarrow> rat"
where
  "harmonic 0 = 0"
| "harmonic (Suc n) = 1 / of_nat (Suc n) + harmonic n"

lemma "harmonic 200 \<ge> 5"
  by eval

lemma "(let (q, r) = quotient_of (harmonic 8) in q div r) \<ge> 2"
  by normalization

lemma "naive_prime 89"
  by eval

lemma "naive_prime 89"
  by normalization

lemma "\<not> naive_prime 87"
  by eval

lemma "\<not> naive_prime 87"
  by normalization

lemma "fac 10 > 3000000"
  by eval

lemma "fac 10 > 3000000"
  by normalization

end