"export_code ... file_prefix ..." is the preferred way to produce output within the logical file-system within the theory context, as well as session exports;
"export_code ... file" is legacy, the empty name form has been discontinued;
updated examples;
(* Title: HOL/ex/Records.thy
Author: Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel,
TU Muenchen
*)
section \<open>Using extensible records in HOL -- points and coloured points\<close>
theory Records
imports Main
begin
subsection \<open>Points\<close>
record point =
xpos :: nat
ypos :: nat
text \<open>
Apart many other things, above record declaration produces the
following theorems:
\<close>
thm point.simps
thm point.iffs
thm point.defs
text \<open>
The set of theorems @{thm [source] point.simps} is added
automatically to the standard simpset, @{thm [source] point.iffs} is
added to the Classical Reasoner and Simplifier context.
\medskip Record declarations define new types and type abbreviations:
@{text [display]
\<open>point = \<lparr>xpos :: nat, ypos :: nat\<rparr> = () point_ext_type
'a point_scheme = \<lparr>xpos :: nat, ypos :: nat, ... :: 'a\<rparr> = 'a point_ext_type\<close>}
\<close>
consts foo2 :: "(| xpos :: nat, ypos :: nat |)"
consts foo4 :: "'a => (| xpos :: nat, ypos :: nat, ... :: 'a |)"
subsubsection \<open>Introducing concrete records and record schemes\<close>
definition foo1 :: point
where "foo1 = (| xpos = 1, ypos = 0 |)"
definition foo3 :: "'a => 'a point_scheme"
where "foo3 ext = (| xpos = 1, ypos = 0, ... = ext |)"
subsubsection \<open>Record selection and record update\<close>
definition getX :: "'a point_scheme => nat"
where "getX r = xpos r"
definition setX :: "'a point_scheme => nat => 'a point_scheme"
where "setX r n = r (| xpos := n |)"
subsubsection \<open>Some lemmas about records\<close>
text \<open>Basic simplifications.\<close>
lemma "point.make n p = (| xpos = n, ypos = p |)"
by (simp only: point.make_def)
lemma "xpos (| xpos = m, ypos = n, ... = p |) = m"
by simp
lemma "(| xpos = m, ypos = n, ... = p |) (| xpos:= 0 |) = (| xpos = 0, ypos = n, ... = p |)"
by simp
text \<open>\medskip Equality of records.\<close>
lemma "n = n' ==> p = p' ==> (| xpos = n, ypos = p |) = (| xpos = n', ypos = p' |)"
\<comment> \<open>introduction of concrete record equality\<close>
by simp
lemma "(| xpos = n, ypos = p |) = (| xpos = n', ypos = p' |) ==> n = n'"
\<comment> \<open>elimination of concrete record equality\<close>
by simp
lemma "r (| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)"
\<comment> \<open>introduction of abstract record equality\<close>
by simp
lemma "r (| xpos := n |) = r (| xpos := n' |) ==> n = n'"
\<comment> \<open>elimination of abstract record equality (manual proof)\<close>
proof -
assume "r (| xpos := n |) = r (| xpos := n' |)" (is "?lhs = ?rhs")
then have "xpos ?lhs = xpos ?rhs" by simp
then show ?thesis by simp
qed
text \<open>\medskip Surjective pairing\<close>
lemma "r = (| xpos = xpos r, ypos = ypos r |)"
by simp
lemma "r = (| xpos = xpos r, ypos = ypos r, ... = point.more r |)"
by simp
text \<open>
\medskip Representation of records by cases or (degenerate)
induction.
\<close>
lemma "r(| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)"
proof (cases r)
fix xpos ypos more
assume "r = (| xpos = xpos, ypos = ypos, ... = more |)"
then show ?thesis by simp
qed
lemma "r (| xpos := n |) (| ypos := m |) = r (| ypos := m |) (| xpos := n |)"
proof (induct r)
fix xpos ypos more
show "(| xpos = xpos, ypos = ypos, ... = more |) (| xpos := n, ypos := m |) =
(| xpos = xpos, ypos = ypos, ... = more |) (| ypos := m, xpos := n |)"
by simp
qed
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)"
proof (cases r)
fix xpos ypos more
assume "r = \<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>"
then show ?thesis by simp
qed
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)"
proof (cases r)
case fields
then show ?thesis by simp
qed
lemma "r (| xpos := n |) (| xpos := m |) = r (| xpos := m |)"
by (cases r) simp
text \<open>
\medskip Concrete records are type instances of record schemes.
\<close>
definition foo5 :: nat
where "foo5 = getX (| xpos = 1, ypos = 0 |)"
text \<open>\medskip Manipulating the ``\<open>...\<close>'' (more) part.\<close>
definition incX :: "'a point_scheme => 'a point_scheme"
where "incX r = (| xpos = xpos r + 1, ypos = ypos r, ... = point.more r |)"
lemma "incX r = setX r (Suc (getX r))"
by (simp add: getX_def setX_def incX_def)
text \<open>An alternative definition.\<close>
definition incX' :: "'a point_scheme => 'a point_scheme"
where "incX' r = r (| xpos := xpos r + 1 |)"
subsection \<open>Coloured points: record extension\<close>
datatype colour = Red | Green | Blue
record cpoint = point +
colour :: colour
text \<open>
The record declaration defines a new type constructor and abbreviations:
@{text [display]
\<open>cpoint = (| xpos :: nat, ypos :: nat, colour :: colour |) =
() cpoint_ext_type point_ext_type
'a cpoint_scheme = (| xpos :: nat, ypos :: nat, colour :: colour, ... :: 'a |) =
'a cpoint_ext_type point_ext_type\<close>}
\<close>
consts foo6 :: cpoint
consts foo7 :: "(| xpos :: nat, ypos :: nat, colour :: colour |)"
consts foo8 :: "'a cpoint_scheme"
consts foo9 :: "(| xpos :: nat, ypos :: nat, colour :: colour, ... :: 'a |)"
text \<open>
Functions on \<open>point\<close> schemes work for \<open>cpoints\<close> as well.
\<close>
definition foo10 :: nat
where "foo10 = getX (| xpos = 2, ypos = 0, colour = Blue |)"
subsubsection \<open>Non-coercive structural subtyping\<close>
text \<open>
Term \<^term>\<open>foo11\<close> has type \<^typ>\<open>cpoint\<close>, not type \<^typ>\<open>point\<close> ---
Great!
\<close>
definition foo11 :: cpoint
where "foo11 = setX (| xpos = 2, ypos = 0, colour = Blue |) 0"
subsection \<open>Other features\<close>
text \<open>Field names contribute to record identity.\<close>
record point' =
xpos' :: nat
ypos' :: nat
text \<open>
\noindent May not apply \<^term>\<open>getX\<close> to @{term [source] "(| xpos' =
2, ypos' = 0 |)"} -- type error.
\<close>
text \<open>\medskip Polymorphic records.\<close>
record 'a point'' = point +
content :: 'a
type_synonym cpoint'' = "colour point''"
text \<open>Updating a record field with an identical value is simplified.\<close>
lemma "r (| xpos := xpos r |) = r"
by simp
text \<open>Only the most recent update to a component survives simplification.\<close>
lemma "r (| xpos := x, ypos := y, xpos := x' |) = r (| ypos := y, xpos := x' |)"
by simp
text \<open>In some cases its convenient to automatically split
(quantified) records. For this purpose there is the simproc @{ML [source]
"Record.split_simproc"} and the tactic @{ML [source]
"Record.split_simp_tac"}. The simplification procedure
only splits the records, whereas the tactic also simplifies the
resulting goal with the standard record simplification rules. A
(generalized) predicate on the record is passed as parameter that
decides whether or how `deep' to split the record. It can peek on the
subterm starting at the quantified occurrence of the record (including
the quantifier). The value \<^ML>\<open>0\<close> indicates no split, a value
greater \<^ML>\<open>0\<close> splits up to the given bound of record extension and
finally the value \<^ML>\<open>~1\<close> completely splits the record.
@{ML [source] "Record.split_simp_tac"} additionally takes a list of
equations for simplification and can also split fixed record variables.
\<close>
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)"
apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
apply simp
done
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply simp
done
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)"
apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
apply simp
done
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply simp
done
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
apply auto
done
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply auto
done
lemma "P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply auto
done
lemma True
proof -
{
fix P r
assume pre: "P (xpos r)"
then have "\<exists>x. P x"
apply -
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply auto
done
}
show ?thesis ..
qed
text \<open>The effect of simproc @{ML [source] Record.ex_sel_eq_simproc} is
illustrated by the following lemma.\<close>
lemma "\<exists>r. xpos r = x"
apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.ex_sel_eq_simproc]) 1\<close>)
done
subsection \<open>A more complex record expression\<close>
record ('a, 'b, 'c) bar = bar1 :: 'a
bar2 :: 'b
bar3 :: 'c
bar21 :: "'b \<times> 'a"
bar32 :: "'c \<times> 'b"
bar31 :: "'c \<times> 'a"
print_record "('a,'b,'c) bar"
subsection \<open>Some code generation\<close>
export_code foo1 foo3 foo5 foo10 checking SML
text \<open>
Code generation can also be switched off, for instance for very large records
\<close>
declare [[record_codegen = false]]
record not_so_large_record =
bar520 :: nat
bar521 :: "nat * nat"
declare [[record_codegen = true]]
end