src/HOL/Deriv.thy
author blanchet
Mon, 01 Sep 2014 16:34:40 +0200
changeset 58128 43a1ba26a8cb
parent 57953 69728243a614
child 58729 e8ecc79aee43
permissions -rw-r--r--
renamed BNF theories

(*  Title       : Deriv.thy
    Author      : Jacques D. Fleuriot
    Copyright   : 1998  University of Cambridge
    Author      : Brian Huffman
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
    GMVT by Benjamin Porter, 2005
*)

header{* Differentiation *}

theory Deriv
imports Limits
begin

subsection {* Frechet derivative *}

definition
  has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow>  bool"
  (infix "(has'_derivative)" 50)
where
  "(f has_derivative f') F \<longleftrightarrow>
    (bounded_linear f' \<and>
     ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) ---> 0) F)"

text {*
  Usually the filter @{term F} is @{term "at x within s"}.  @{term "(f has_derivative D)
  (at x within s)"} means: @{term D} is the derivative of function @{term f} at point @{term x}
  within the set @{term s}. Where @{term s} is used to express left or right sided derivatives. In
  most cases @{term s} is either a variable or @{term UNIV}.
*}

lemma has_derivative_eq_rhs: "(f has_derivative f') F \<Longrightarrow> f' = g' \<Longrightarrow> (f has_derivative g') F"
  by simp

definition 
  has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
  (infix "(has'_field'_derivative)" 50)
where
  "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative op * D) F"

lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F"
  by simp

definition
  has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool"
  (infix "has'_vector'_derivative" 50)
where
  "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"

lemma has_vector_derivative_eq_rhs: "(f has_vector_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_vector_derivative Y) F"
  by simp

named_theorems derivative_intros "structural introduction rules for derivatives"
setup {*
  let
    val eq_thms = @{thms has_derivative_eq_rhs DERIV_cong has_vector_derivative_eq_rhs}
    fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms
  in
    Global_Theory.add_thms_dynamic
      (@{binding derivative_eq_intros},
        fn context =>
          Named_Theorems.get (Context.proof_of context) @{named_theorems derivative_intros}
          |> map_filter eq_rule)
  end;
*}

text {*
  The following syntax is only used as a legacy syntax.
*}
abbreviation (input)
  FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> bool"
  ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
where
  "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)"

lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'"
  by (simp add: has_derivative_def)

lemma has_derivative_linear: "(f has_derivative f') F \<Longrightarrow> linear f'"
  using bounded_linear.linear[OF has_derivative_bounded_linear] .

lemma has_derivative_ident[derivative_intros, simp]: "((\<lambda>x. x) has_derivative (\<lambda>x. x)) F"
  by (simp add: has_derivative_def tendsto_const)

lemma has_derivative_const[derivative_intros, simp]: "((\<lambda>x. c) has_derivative (\<lambda>x. 0)) F"
  by (simp add: has_derivative_def tendsto_const)

lemma (in bounded_linear) bounded_linear: "bounded_linear f" ..

lemma (in bounded_linear) has_derivative:
  "(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F"
  using assms unfolding has_derivative_def
  apply safe
  apply (erule bounded_linear_compose [OF bounded_linear])
  apply (drule tendsto)
  apply (simp add: scaleR diff add zero)
  done

lemmas has_derivative_scaleR_right [derivative_intros] =
  bounded_linear.has_derivative [OF bounded_linear_scaleR_right]

lemmas has_derivative_scaleR_left [derivative_intros] =
  bounded_linear.has_derivative [OF bounded_linear_scaleR_left]

lemmas has_derivative_mult_right [derivative_intros] =
  bounded_linear.has_derivative [OF bounded_linear_mult_right]

lemmas has_derivative_mult_left [derivative_intros] =
  bounded_linear.has_derivative [OF bounded_linear_mult_left]

lemma has_derivative_add[simp, derivative_intros]:
  assumes f: "(f has_derivative f') F" and g: "(g has_derivative g') F"
  shows "((\<lambda>x. f x + g x) has_derivative (\<lambda>x. f' x + g' x)) F"
  unfolding has_derivative_def
proof safe
  let ?x = "Lim F (\<lambda>x. x)"
  let ?D = "\<lambda>f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)"
  have "((\<lambda>x. ?D f f' x + ?D g g' x) ---> (0 + 0)) F"
    using f g by (intro tendsto_add) (auto simp: has_derivative_def)
  then show "(?D (\<lambda>x. f x + g x) (\<lambda>x. f' x + g' x) ---> 0) F"
    by (simp add: field_simps scaleR_add_right scaleR_diff_right)
qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear)

lemma has_derivative_setsum[simp, derivative_intros]:
  assumes f: "\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) F"
  shows "((\<lambda>x. \<Sum>i\<in>I. f i x) has_derivative (\<lambda>x. \<Sum>i\<in>I. f' i x)) F"
proof cases
  assume "finite I" from this f show ?thesis
    by induct (simp_all add: f)
qed simp

lemma has_derivative_minus[simp, derivative_intros]: "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. - f x) has_derivative (\<lambda>x. - f' x)) F"
  using has_derivative_scaleR_right[of f f' F "-1"] by simp

lemma has_derivative_diff[simp, derivative_intros]:
  "(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F"
  by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus)

lemma has_derivative_at_within:
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
    (bounded_linear f' \<and> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) ---> 0) (at x within s))"
  by (cases "at x within s = bot") (simp_all add: has_derivative_def Lim_ident_at)

lemma has_derivative_iff_norm:
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
    (bounded_linear f' \<and> ((\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) ---> 0) (at x within s))"
  using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric]
  by (simp add: has_derivative_at_within divide_inverse ac_simps)

lemma has_derivative_at:
  "(f has_derivative D) (at x) \<longleftrightarrow> (bounded_linear D \<and> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0)"
  unfolding has_derivative_iff_norm LIM_offset_zero_iff[of _ _ x] by simp

lemma field_has_derivative_at:
  fixes x :: "'a::real_normed_field"
  shows "(f has_derivative op * D) (at x) \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
  apply (unfold has_derivative_at)
  apply (simp add: bounded_linear_mult_right)
  apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric])
  apply (subst diff_divide_distrib)
  apply (subst times_divide_eq_left [symmetric])
  apply (simp cong: LIM_cong)
  apply (simp add: tendsto_norm_zero_iff LIM_zero_iff)
  done

lemma has_derivativeI:
  "bounded_linear f' \<Longrightarrow> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) ---> 0) (at x within s) \<Longrightarrow>
  (f has_derivative f') (at x within s)"
  by (simp add: has_derivative_at_within)

lemma has_derivativeI_sandwich:
  assumes e: "0 < e" and bounded: "bounded_linear f'"
    and sandwich: "(\<And>y. y \<in> s \<Longrightarrow> y \<noteq> x \<Longrightarrow> dist y x < e \<Longrightarrow> norm ((f y - f x) - f' (y - x)) / norm (y - x) \<le> H y)"
    and "(H ---> 0) (at x within s)"
  shows "(f has_derivative f') (at x within s)"
  unfolding has_derivative_iff_norm
proof safe
  show "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) ---> 0) (at x within s)"
  proof (rule tendsto_sandwich[where f="\<lambda>x. 0"])
    show "(H ---> 0) (at x within s)" by fact
    show "eventually (\<lambda>n. norm (f n - f x - f' (n - x)) / norm (n - x) \<le> H n) (at x within s)"
      unfolding eventually_at using e sandwich by auto
  qed (auto simp: le_divide_eq tendsto_const)
qed fact

lemma has_derivative_subset: "(f has_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> (f has_derivative f') (at x within t)"
  by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset)

lemmas has_derivative_within_subset = has_derivative_subset 


subsection {* Continuity *}

lemma has_derivative_continuous:
  assumes f: "(f has_derivative f') (at x within s)"
  shows "continuous (at x within s) f"
proof -
  from f interpret F: bounded_linear f' by (rule has_derivative_bounded_linear)
  note F.tendsto[tendsto_intros]
  let ?L = "\<lambda>f. (f ---> 0) (at x within s)"
  have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x))"
    using f unfolding has_derivative_iff_norm by blast
  then have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m)
    by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros)
  also have "?m \<longleftrightarrow> ?L (\<lambda>y. norm ((f y - f x) - f' (y - x)))"
    by (intro filterlim_cong) (simp_all add: eventually_at_filter)
  finally have "?L (\<lambda>y. (f y - f x) - f' (y - x))"
    by (rule tendsto_norm_zero_cancel)
  then have "?L (\<lambda>y. ((f y - f x) - f' (y - x)) + f' (y - x))"
    by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero)
  then have "?L (\<lambda>y. f y - f x)"
    by simp
  from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis
    by (simp add: continuous_within)
qed

subsection {* Composition *}

lemma tendsto_at_iff_tendsto_nhds_within: "f x = y \<Longrightarrow> (f ---> y) (at x within s) \<longleftrightarrow> (f ---> y) (inf (nhds x) (principal s))"
  unfolding tendsto_def eventually_inf_principal eventually_at_filter
  by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1)

lemma has_derivative_in_compose:
  assumes f: "(f has_derivative f') (at x within s)"
  assumes g: "(g has_derivative g') (at (f x) within (f`s))"
  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
proof -
  from f interpret F: bounded_linear f' by (rule has_derivative_bounded_linear)
  from g interpret G: bounded_linear g' by (rule has_derivative_bounded_linear)
  from F.bounded obtain kF where kF: "\<And>x. norm (f' x) \<le> norm x * kF" by fast
  from G.bounded obtain kG where kG: "\<And>x. norm (g' x) \<le> norm x * kG" by fast
  note G.tendsto[tendsto_intros]

  let ?L = "\<lambda>f. (f ---> 0) (at x within s)"
  let ?D = "\<lambda>f f' x y. (f y - f x) - f' (y - x)"
  let ?N = "\<lambda>f f' x y. norm (?D f f' x y) / norm (y - x)"
  let ?gf = "\<lambda>x. g (f x)" and ?gf' = "\<lambda>x. g' (f' x)"
  def Nf \<equiv> "?N f f' x"
  def Ng \<equiv> "\<lambda>y. ?N g g' (f x) (f y)"

  show ?thesis
  proof (rule has_derivativeI_sandwich[of 1])
    show "bounded_linear (\<lambda>x. g' (f' x))"
      using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear)
  next
    fix y::'a assume neq: "y \<noteq> x"
    have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)"
      by (simp add: G.diff G.add field_simps)
    also have "\<dots> \<le> norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))"
      by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def)
    also have "\<dots> \<le> Nf y * kG + Ng y * (Nf y + kF)"
    proof (intro add_mono mult_left_mono)
      have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))"
        by simp
      also have "\<dots> \<le> norm (?D f f' x y) + norm (f' (y - x))"
        by (rule norm_triangle_ineq)
      also have "\<dots> \<le> norm (?D f f' x y) + norm (y - x) * kF"
        using kF by (intro add_mono) simp
      finally show "norm (f y - f x) / norm (y - x) \<le> Nf y + kF"
        by (simp add: neq Nf_def field_simps)
    qed (insert kG, simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps)
    finally show "?N ?gf ?gf' x y \<le> Nf y * kG + Ng y * (Nf y + kF)" .
  next
    have [tendsto_intros]: "?L Nf"
      using f unfolding has_derivative_iff_norm Nf_def ..
    from f have "(f ---> f x) (at x within s)"
      by (blast intro: has_derivative_continuous continuous_within[THEN iffD1])
    then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))"
      unfolding filterlim_def
      by (simp add: eventually_filtermap eventually_at_filter le_principal)

    have "((?N g  g' (f x)) ---> 0) (at (f x) within f`s)"
      using g unfolding has_derivative_iff_norm ..
    then have g': "((?N g  g' (f x)) ---> 0) (inf (nhds (f x)) (principal (f`s)))"
      by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp

    have [tendsto_intros]: "?L Ng"
      unfolding Ng_def by (rule filterlim_compose[OF g' f'])
    show "((\<lambda>y. Nf y * kG + Ng y * (Nf y + kF)) ---> 0) (at x within s)"
      by (intro tendsto_eq_intros) auto
  qed simp
qed

lemma has_derivative_compose:
  "(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow>
  ((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
  by (blast intro: has_derivative_in_compose has_derivative_subset)

lemma (in bounded_bilinear) FDERIV:
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)"
  shows "((\<lambda>x. f x ** g x) has_derivative (\<lambda>h. f x ** g' h + f' h ** g x)) (at x within s)"
proof -
  from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]]
  obtain KF where norm_F: "\<And>x. norm (f' x) \<le> norm x * KF" by fast

  from pos_bounded obtain K where K: "0 < K" and norm_prod:
    "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" by fast
  let ?D = "\<lambda>f f' y. f y - f x - f' (y - x)"
  let ?N = "\<lambda>f f' y. norm (?D f f' y) / norm (y - x)"
  def Ng =="?N g g'" and Nf =="?N f f'"

  let ?fun1 = "\<lambda>y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)"
  let ?fun2 = "\<lambda>y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K"
  let ?F = "at x within s"

  show ?thesis
  proof (rule has_derivativeI_sandwich[of 1])
    show "bounded_linear (\<lambda>h. f x ** g' h + f' h ** g x)"
      by (intro bounded_linear_add
        bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left]
        has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f])
  next
    from g have "(g ---> g x) ?F"
      by (intro continuous_within[THEN iffD1] has_derivative_continuous)
    moreover from f g have "(Nf ---> 0) ?F" "(Ng ---> 0) ?F"
      by (simp_all add: has_derivative_iff_norm Ng_def Nf_def)
    ultimately have "(?fun2 ---> norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F"
      by (intro tendsto_intros) (simp_all add: LIM_zero_iff)
    then show "(?fun2 ---> 0) ?F"
      by simp
  next
    fix y::'d assume "y \<noteq> x"
    have "?fun1 y = norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)"
      by (simp add: diff_left diff_right add_left add_right field_simps)
    also have "\<dots> \<le> (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K +
        norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)"
      by (intro divide_right_mono mult_mono'
                order_trans [OF norm_triangle_ineq add_mono]
                order_trans [OF norm_prod mult_right_mono]
                mult_nonneg_nonneg order_refl norm_ge_zero norm_F
                K [THEN order_less_imp_le])
    also have "\<dots> = ?fun2 y"
      by (simp add: add_divide_distrib Ng_def Nf_def)
    finally show "?fun1 y \<le> ?fun2 y" .
  qed simp
qed

lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult]
lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR]

lemma has_derivative_setprod[simp, derivative_intros]:
  fixes f :: "'i \<Rightarrow> 'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
  assumes f: "\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) (at x within s)"
  shows "((\<lambda>x. \<Prod>i\<in>I. f i x) has_derivative (\<lambda>y. \<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x))) (at x within s)"
proof cases
  assume "finite I" from this f show ?thesis
  proof induct
    case (insert i I)
    let ?P = "\<lambda>y. f i x * (\<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x)) + (f' i y) * (\<Prod>i\<in>I. f i x)"
    have "((\<lambda>x. f i x * (\<Prod>i\<in>I. f i x)) has_derivative ?P) (at x within s)"
      using insert by (intro has_derivative_mult) auto
    also have "?P = (\<lambda>y. \<Sum>i'\<in>insert i I. f' i' y * (\<Prod>j\<in>insert i I - {i'}. f j x))"
      using insert(1,2) by (auto simp add: setsum_right_distrib insert_Diff_if intro!: ext setsum.cong)
    finally show ?case
      using insert by simp
  qed simp  
qed simp

lemma has_derivative_power[simp, derivative_intros]:
  fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
  assumes f: "(f has_derivative f') (at x within s)"
  shows "((\<lambda>x. f x^n) has_derivative (\<lambda>y. of_nat n * f' y * f x^(n - 1))) (at x within s)"
  using has_derivative_setprod[OF f, of "{..< n}"] by (simp add: setprod_constant ac_simps)

lemma has_derivative_inverse':
  fixes x :: "'a::real_normed_div_algebra"
  assumes x: "x \<noteq> 0"
  shows "(inverse has_derivative (\<lambda>h. - (inverse x * h * inverse x))) (at x within s)"
        (is "(?inv has_derivative ?f) _")
proof (rule has_derivativeI_sandwich)
  show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))"
    apply (rule bounded_linear_minus)
    apply (rule bounded_linear_mult_const)
    apply (rule bounded_linear_const_mult)
    apply (rule bounded_linear_ident)
    done
next
  show "0 < norm x" using x by simp
next
  show "((\<lambda>y. norm (?inv y - ?inv x) * norm (?inv x)) ---> 0) (at x within s)"
    apply (rule tendsto_mult_left_zero)
    apply (rule tendsto_norm_zero)
    apply (rule LIM_zero)
    apply (rule tendsto_inverse)
    apply (rule tendsto_ident_at)
    apply (rule x)
    done
next
  fix y::'a assume h: "y \<noteq> x" "dist y x < norm x"
  then have "y \<noteq> 0"
    by (auto simp: norm_conv_dist dist_commute)
  have "norm (?inv y - ?inv x - ?f (y -x)) / norm (y - x) = norm ((?inv y - ?inv x) * (y - x) * ?inv x) / norm (y - x)"
    apply (subst inverse_diff_inverse [OF `y \<noteq> 0` x])
    apply (subst minus_diff_minus)
    apply (subst norm_minus_cancel)
    apply (simp add: left_diff_distrib)
    done
  also have "\<dots> \<le> norm (?inv y - ?inv x) * norm (y - x) * norm (?inv x) / norm (y - x)"
    apply (rule divide_right_mono [OF _ norm_ge_zero])
    apply (rule order_trans [OF norm_mult_ineq])
    apply (rule mult_right_mono [OF _ norm_ge_zero])
    apply (rule norm_mult_ineq)
    done
  also have "\<dots> = norm (?inv y - ?inv x) * norm (?inv x)"
    by simp
  finally show "norm (?inv y - ?inv x - ?f (y -x)) / norm (y - x) \<le>
      norm (?inv y - ?inv x) * norm (?inv x)" .
qed

lemma has_derivative_inverse[simp, derivative_intros]:
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
  assumes x:  "f x \<noteq> 0" and f: "(f has_derivative f') (at x within s)"
  shows "((\<lambda>x. inverse (f x)) has_derivative (\<lambda>h. - (inverse (f x) * f' h * inverse (f x)))) (at x within s)"
  using has_derivative_compose[OF f has_derivative_inverse', OF x] .

lemma has_derivative_divide[simp, derivative_intros]:
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)" 
  assumes x: "g x \<noteq> 0"
  shows "((\<lambda>x. f x / g x) has_derivative
                (\<lambda>h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within s)"
  using has_derivative_mult[OF f has_derivative_inverse[OF x g]]
  by (simp add: field_simps)

text{*Conventional form requires mult-AC laws. Types real and complex only.*}

lemma has_derivative_divide'[derivative_intros]: 
  fixes f :: "_ \<Rightarrow> 'a::real_normed_field"
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)" and x: "g x \<noteq> 0"
  shows "((\<lambda>x. f x / g x) has_derivative (\<lambda>h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within s)"
proof -
  { fix h
    have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) =
          (f' h * g x - f x * g' h) / (g x * g x)"
      by (simp add: field_simps x)
   }
  then show ?thesis
    using has_derivative_divide [OF f g] x
    by simp
qed

subsection {* Uniqueness *}

text {*

This can not generally shown for @{const has_derivative}, as we need to approach the point from
all directions. There is a proof in @{text Multivariate_Analysis} for @{text euclidean_space}.

*}

lemma has_derivative_zero_unique:
  assumes "((\<lambda>x. 0) has_derivative F) (at x)" shows "F = (\<lambda>h. 0)"
proof -
  interpret F: bounded_linear F
    using assms by (rule has_derivative_bounded_linear)
  let ?r = "\<lambda>h. norm (F h) / norm h"
  have *: "?r -- 0 --> 0"
    using assms unfolding has_derivative_at by simp
  show "F = (\<lambda>h. 0)"
  proof
    fix h show "F h = 0"
    proof (rule ccontr)
      assume **: "F h \<noteq> 0"
      hence h: "h \<noteq> 0" by (clarsimp simp add: F.zero)
      with ** have "0 < ?r h" by simp
      from LIM_D [OF * this] obtain s where s: "0 < s"
        and r: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> ?r x < ?r h" by auto
      from dense [OF s] obtain t where t: "0 < t \<and> t < s" ..
      let ?x = "scaleR (t / norm h) h"
      have "?x \<noteq> 0" and "norm ?x < s" using t h by simp_all
      hence "?r ?x < ?r h" by (rule r)
      thus "False" using t h by (simp add: F.scaleR)
    qed
  qed
qed

lemma has_derivative_unique:
  assumes "(f has_derivative F) (at x)" and "(f has_derivative F') (at x)" shows "F = F'"
proof -
  have "((\<lambda>x. 0) has_derivative (\<lambda>h. F h - F' h)) (at x)"
    using has_derivative_diff [OF assms] by simp
  hence "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)"
    by (rule has_derivative_zero_unique)
  thus "F = F'"
    unfolding fun_eq_iff right_minus_eq .
qed

subsection {* Differentiability predicate *}

definition
  differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
  (infix "differentiable" 50)
where
  "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)"

lemma differentiable_subset: "f differentiable (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f differentiable (at x within t)"
  unfolding differentiable_def by (blast intro: has_derivative_subset)

lemmas differentiable_within_subset = differentiable_subset

lemma differentiable_ident [simp, derivative_intros]: "(\<lambda>x. x) differentiable F"
  unfolding differentiable_def by (blast intro: has_derivative_ident)

lemma differentiable_const [simp, derivative_intros]: "(\<lambda>z. a) differentiable F"
  unfolding differentiable_def by (blast intro: has_derivative_const)

lemma differentiable_in_compose:
  "f differentiable (at (g x) within (g`s)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f (g x)) differentiable (at x within s)"
  unfolding differentiable_def by (blast intro: has_derivative_in_compose)

lemma differentiable_compose:
  "f differentiable (at (g x)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f (g x)) differentiable (at x within s)"
  by (blast intro: differentiable_in_compose differentiable_subset)

lemma differentiable_sum [simp, derivative_intros]:
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x + g x) differentiable F"
  unfolding differentiable_def by (blast intro: has_derivative_add)

lemma differentiable_minus [simp, derivative_intros]:
  "f differentiable F \<Longrightarrow> (\<lambda>x. - f x) differentiable F"
  unfolding differentiable_def by (blast intro: has_derivative_minus)

lemma differentiable_diff [simp, derivative_intros]:
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x - g x) differentiable F"
  unfolding differentiable_def by (blast intro: has_derivative_diff)

lemma differentiable_mult [simp, derivative_intros]:
  fixes f g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_algebra"
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x * g x) differentiable (at x within s)"
  unfolding differentiable_def by (blast intro: has_derivative_mult)

lemma differentiable_inverse [simp, derivative_intros]:
  fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
  shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> (\<lambda>x. inverse (f x)) differentiable (at x within s)"
  unfolding differentiable_def by (blast intro: has_derivative_inverse)

lemma differentiable_divide [simp, derivative_intros]:
  fixes f g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow> (\<lambda>x. f x / g x) differentiable (at x within s)"
  unfolding divide_inverse using assms by simp

lemma differentiable_power [simp, derivative_intros]:
  fixes f g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
  shows "f differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x ^ n) differentiable (at x within s)"
  unfolding differentiable_def by (blast intro: has_derivative_power)

lemma differentiable_scaleR [simp, derivative_intros]:
  "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) differentiable (at x within s)"
  unfolding differentiable_def by (blast intro: has_derivative_scaleR)

lemma has_derivative_imp_has_field_derivative:
  "(f has_derivative D) F \<Longrightarrow> (\<And>x. x * D' = D x) \<Longrightarrow> (f has_field_derivative D') F"
  unfolding has_field_derivative_def 
  by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute)

lemma has_field_derivative_imp_has_derivative: "(f has_field_derivative D) F \<Longrightarrow> (f has_derivative op * D) F"
  by (simp add: has_field_derivative_def)

lemma DERIV_subset: 
  "(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s 
   \<Longrightarrow> (f has_field_derivative f') (at x within t)"
  by (simp add: has_field_derivative_def has_derivative_within_subset)

abbreviation (input)
  DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
  ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
where
  "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)"

abbreviation 
  has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool"
  (infix "(has'_real'_derivative)" 50)
where
  "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"

lemma real_differentiable_def:
  "f differentiable at x within s \<longleftrightarrow> (\<exists>D. (f has_real_derivative D) (at x within s))"
proof safe
  assume "f differentiable at x within s"
  then obtain f' where *: "(f has_derivative f') (at x within s)"
    unfolding differentiable_def by auto
  then obtain c where "f' = (op * c)"
    by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff)
  with * show "\<exists>D. (f has_real_derivative D) (at x within s)"
    unfolding has_field_derivative_def by auto
qed (auto simp: differentiable_def has_field_derivative_def)

lemma real_differentiableE [elim?]:
  assumes f: "f differentiable (at x within s)" obtains df where "(f has_real_derivative df) (at x within s)"
  using assms by (auto simp: real_differentiable_def)

lemma differentiableD: "f differentiable (at x within s) \<Longrightarrow> \<exists>D. (f has_real_derivative D) (at x within s)"
  by (auto elim: real_differentiableE)

lemma differentiableI: "(f has_real_derivative D) (at x within s) \<Longrightarrow> f differentiable (at x within s)"
  by (force simp add: real_differentiable_def)

lemma DERIV_def: "DERIV f x :> D \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
  apply (simp add: has_field_derivative_def has_derivative_at bounded_linear_mult_right LIM_zero_iff[symmetric, of _ D])
  apply (subst (2) tendsto_norm_zero_iff[symmetric])
  apply (rule filterlim_cong)
  apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide)
  done

lemma mult_commute_abs: "(\<lambda>x. x * c) = op * (c::'a::ab_semigroup_mult)"
  by (simp add: fun_eq_iff mult.commute)

subsection {* Derivatives *}

lemma DERIV_D: "DERIV f x :> D \<Longrightarrow> (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
  by (simp add: DERIV_def)

lemma DERIV_const [simp, derivative_intros]: "((\<lambda>x. k) has_field_derivative 0) F"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto

lemma DERIV_ident [simp, derivative_intros]: "((\<lambda>x. x) has_field_derivative 1) F"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto

lemma field_differentiable_add[derivative_intros]:
  "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow> 
    ((\<lambda>z. f z + g z) has_field_derivative f' + g') F"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add])
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)

corollary DERIV_add:
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
  ((\<lambda>x. f x + g x) has_field_derivative D + E) (at x within s)"
  by (rule field_differentiable_add)

lemma field_differentiable_minus[derivative_intros]:
  "(f has_field_derivative f') F \<Longrightarrow> ((\<lambda>z. - (f z)) has_field_derivative -f') F"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus])
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)

corollary DERIV_minus: "(f has_field_derivative D) (at x within s) \<Longrightarrow> ((\<lambda>x. - f x) has_field_derivative -D) (at x within s)"
  by (rule field_differentiable_minus)

lemma field_differentiable_diff[derivative_intros]:
  "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow> ((\<lambda>z. f z - g z) has_field_derivative f' - g') F"
  by (simp only: assms diff_conv_add_uminus field_differentiable_add field_differentiable_minus)

corollary DERIV_diff:
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
  ((\<lambda>x. f x - g x) has_field_derivative D - E) (at x within s)"
  by (rule field_differentiable_diff)

lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
  by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp

corollary DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"
  by (rule DERIV_continuous)

lemma DERIV_continuous_on:
  "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative D) (at x)) \<Longrightarrow> continuous_on s f"
  by (metis DERIV_continuous continuous_at_imp_continuous_on)

lemma DERIV_mult':
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
  ((\<lambda>x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
     (auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative)

lemma DERIV_mult[derivative_intros]:
  "(f has_field_derivative Da) (at x within s) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
  ((\<lambda>x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
     (auto simp: field_simps dest: has_field_derivative_imp_has_derivative)

text {* Derivative of linear multiplication *}

lemma DERIV_cmult:
  "(f has_field_derivative D) (at x within s) ==> ((\<lambda>x. c * f x) has_field_derivative c * D) (at x within s)"
  by (drule DERIV_mult' [OF DERIV_const], simp)

lemma DERIV_cmult_right:
  "(f has_field_derivative D) (at x within s) ==> ((\<lambda>x. f x * c) has_field_derivative D * c) (at x within s)"
  using DERIV_cmult by (force simp add: ac_simps)

lemma DERIV_cmult_Id [simp]: "(op * c has_field_derivative c) (at x within s)"
  by (cut_tac c = c and x = x in DERIV_ident [THEN DERIV_cmult], simp)

lemma DERIV_cdivide:
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> ((\<lambda>x. f x / c) has_field_derivative D / c) (at x within s)"
  using DERIV_cmult_right[of f D x s "1 / c"] by simp

lemma DERIV_unique:
  "DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E"
  unfolding DERIV_def by (rule LIM_unique) 

lemma DERIV_setsum[derivative_intros]:
  "(\<And> n. n \<in> S \<Longrightarrow> ((\<lambda>x. f x n) has_field_derivative (f' x n)) F) \<Longrightarrow> 
    ((\<lambda>x. setsum (f x) S) has_field_derivative setsum (f' x) S) F"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_setsum])
     (auto simp: setsum_right_distrib mult_commute_abs dest: has_field_derivative_imp_has_derivative)

lemma DERIV_inverse'[derivative_intros]:
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
  ((\<lambda>x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x))) (at x within s)"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_inverse])
     (auto dest: has_field_derivative_imp_has_derivative)

text {* Power of @{text "-1"} *}

lemma DERIV_inverse:
  "x \<noteq> 0 \<Longrightarrow> ((\<lambda>x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)"
  by (drule DERIV_inverse' [OF DERIV_ident]) simp

text {* Derivative of inverse *}

lemma DERIV_inverse_fun:
  "(f has_field_derivative d) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
  ((\<lambda>x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)"
  by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib)

text {* Derivative of quotient *}

lemma DERIV_divide[derivative_intros]:
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
  (g has_field_derivative E) (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
  ((\<lambda>x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide])
     (auto dest: has_field_derivative_imp_has_derivative simp: field_simps)

lemma DERIV_quotient:
  "(f has_field_derivative d) (at x within s) \<Longrightarrow>
  (g has_field_derivative e) (at x within s)\<Longrightarrow> g x \<noteq> 0 \<Longrightarrow> 
  ((\<lambda>y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)"
  by (drule (2) DERIV_divide) (simp add: mult.commute)

lemma DERIV_power_Suc:
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
  ((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
     (auto simp: has_field_derivative_def)

lemma DERIV_power[derivative_intros]:
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
  ((\<lambda>x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)"
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
     (auto simp: has_field_derivative_def)

lemma DERIV_pow: "((\<lambda>x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)"
  apply (cut_tac DERIV_power [OF DERIV_ident])
  apply (simp add: real_of_nat_def)
  done

lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \<Longrightarrow> DERIV g (f x) :> E \<Longrightarrow> 
  ((\<lambda>x. g (f x)) has_field_derivative E * D) (at x within s)"
  using has_derivative_compose[of f "op * D" x s g "op * E"]
  unfolding has_field_derivative_def mult_commute_abs ac_simps .

corollary DERIV_chain2: "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
  ((\<lambda>x. f (g x)) has_field_derivative Da * Db) (at x within s)"
  by (rule DERIV_chain')

text {* Standard version *}

lemma DERIV_chain:
  "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow> 
  (f o g has_field_derivative Da * Db) (at x within s)"
  by (drule (1) DERIV_chain', simp add: o_def mult.commute)

lemma DERIV_image_chain: 
  "(f has_field_derivative Da) (at (g x) within (g ` s)) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
  (f o g has_field_derivative Da * Db) (at x within s)"
  using has_derivative_in_compose [of g "op * Db" x s f "op * Da "]
  by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps)

(*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*)
lemma DERIV_chain_s:
  assumes "(\<And>x. x \<in> s \<Longrightarrow> DERIV g x :> g'(x))"
      and "DERIV f x :> f'" 
      and "f x \<in> s"
    shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
  by (metis (full_types) DERIV_chain' mult.commute assms)

lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*)
  assumes "(\<And>x. DERIV g x :> g'(x))"
      and "DERIV f x :> f'" 
    shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
  by (metis UNIV_I DERIV_chain_s [of UNIV] assms)

declare
  DERIV_power[where 'a=real, unfolded real_of_nat_def[symmetric], derivative_intros]

text{*Alternative definition for differentiability*}

lemma DERIV_LIM_iff:
  fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a" shows
     "((%h. (f(a + h) - f(a)) / h) -- 0 --> D) =
      ((%x. (f(x)-f(a)) / (x-a)) -- a --> D)"
apply (rule iffI)
apply (drule_tac k="- a" in LIM_offset)
apply simp
apply (drule_tac k="a" in LIM_offset)
apply (simp add: add.commute)
done

lemma DERIV_iff2: "(DERIV f x :> D) \<longleftrightarrow> (\<lambda>z. (f z - f x) / (z - x)) --x --> D"
  by (simp add: DERIV_def DERIV_LIM_iff)

lemma DERIV_cong_ev: "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>
    DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"
  unfolding DERIV_iff2
proof (rule filterlim_cong)
  assume *: "eventually (\<lambda>x. f x = g x) (nhds x)"
  moreover from * have "f x = g x" by (auto simp: eventually_nhds)
  moreover assume "x = y" "u = v"
  ultimately show "eventually (\<lambda>xa. (f xa - f x) / (xa - x) = (g xa - g y) / (xa - y)) (at x)"
    by (auto simp: eventually_at_filter elim: eventually_elim1)
qed simp_all

lemma DERIV_shift:
  "(DERIV f (x + z) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (x + z)) x :> y)"
  by (simp add: DERIV_def field_simps)

lemma DERIV_mirror:
  "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x::real) :: real) x :> - y)"
  by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right
                tendsto_minus_cancel_left field_simps conj_commute)

text {* Caratheodory formulation of derivative at a point *}

lemma CARAT_DERIV: (*FIXME: SUPERSEDED BY THE ONE IN Deriv.thy. But still used by NSA/HDeriv.thy*)
  "(DERIV f x :> l) \<longleftrightarrow> (\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l)"
      (is "?lhs = ?rhs")
proof
  assume der: "DERIV f x :> l"
  show "\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) \<and> isCont g x \<and> g x = l"
  proof (intro exI conjI)
    let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))"
    show "\<forall>z. f z - f x = ?g z * (z-x)" by simp
    show "isCont ?g x" using der
      by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format])
    show "?g x = l" by simp
  qed
next
  assume "?rhs"
  then obtain g where
    "(\<forall>z. f z - f x = g z * (z-x))" and "isCont g x" and "g x = l" by blast
  thus "(DERIV f x :> l)"
     by (auto simp add: isCont_iff DERIV_def cong: LIM_cong)
qed

text {*
 Let's do the standard proof, though theorem
 @{text "LIM_mult2"} follows from a NS proof
*}

subsection {* Local extrema *}

text{*If @{term "0 < f'(x)"} then @{term x} is Locally Strictly Increasing At The Right*}

lemma DERIV_pos_inc_right:
  fixes f :: "real => real"
  assumes der: "DERIV f x :> l"
      and l:   "0 < l"
  shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x + h)"
proof -
  from l der [THEN DERIV_D, THEN LIM_D [where r = "l"]]
  have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l)"
    by simp
  then obtain s
        where s:   "0 < s"
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l"
    by auto
  thus ?thesis
  proof (intro exI conjI strip)
    show "0<s" using s .
    fix h::real
    assume "0 < h" "h < s"
    with all [of h] show "f x < f (x+h)"
    proof (simp add: abs_if pos_less_divide_eq split add: split_if_asm)
      assume "~ (f (x+h) - f x) / h < l" and h: "0 < h"
      with l
      have "0 < (f (x+h) - f x) / h" by arith
      thus "f x < f (x+h)"
  by (simp add: pos_less_divide_eq h)
    qed
  qed
qed

lemma DERIV_neg_dec_left:
  fixes f :: "real => real"
  assumes der: "DERIV f x :> l"
      and l:   "l < 0"
  shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x-h)"
proof -
  from l der [THEN DERIV_D, THEN LIM_D [where r = "-l"]]
  have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l)"
    by simp
  then obtain s
        where s:   "0 < s"
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l"
    by auto
  thus ?thesis
  proof (intro exI conjI strip)
    show "0<s" using s .
    fix h::real
    assume "0 < h" "h < s"
    with all [of "-h"] show "f x < f (x-h)"
    proof (simp add: abs_if pos_less_divide_eq split add: split_if_asm)
      assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h"
      with l
      have "0 < (f (x-h) - f x) / h" by arith
      thus "f x < f (x-h)"
  by (simp add: pos_less_divide_eq h)
    qed
  qed
qed

lemma DERIV_pos_inc_left:
  fixes f :: "real => real"
  shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x - h) < f(x)"
  apply (rule DERIV_neg_dec_left [of "%x. - f x" "-l" x, simplified])
  apply (auto simp add: DERIV_minus)
  done

lemma DERIV_neg_dec_right:
  fixes f :: "real => real"
  shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x) > f(x + h)"
  apply (rule DERIV_pos_inc_right [of "%x. - f x" "-l" x, simplified])
  apply (auto simp add: DERIV_minus)
  done

lemma DERIV_local_max:
  fixes f :: "real => real"
  assumes der: "DERIV f x :> l"
      and d:   "0 < d"
      and le:  "\<forall>y. \<bar>x-y\<bar> < d --> f(y) \<le> f(x)"
  shows "l = 0"
proof (cases rule: linorder_cases [of l 0])
  case equal thus ?thesis .
next
  case less
  from DERIV_neg_dec_left [OF der less]
  obtain d' where d': "0 < d'"
             and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x-h)" by blast
  from real_lbound_gt_zero [OF d d']
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
  with lt le [THEN spec [where x="x-e"]]
  show ?thesis by (auto simp add: abs_if)
next
  case greater
  from DERIV_pos_inc_right [OF der greater]
  obtain d' where d': "0 < d'"
             and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)" by blast
  from real_lbound_gt_zero [OF d d']
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
  with lt le [THEN spec [where x="x+e"]]
  show ?thesis by (auto simp add: abs_if)
qed


text{*Similar theorem for a local minimum*}
lemma DERIV_local_min:
  fixes f :: "real => real"
  shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) \<le> f(y) |] ==> l = 0"
by (drule DERIV_minus [THEN DERIV_local_max], auto)


text{*In particular, if a function is locally flat*}
lemma DERIV_local_const:
  fixes f :: "real => real"
  shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) = f(y) |] ==> l = 0"
by (auto dest!: DERIV_local_max)


subsection {* Rolle's Theorem *}

text{*Lemma about introducing open ball in open interval*}
lemma lemma_interval_lt:
     "[| a < x;  x < b |]
      ==> \<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a < y & y < b)"

apply (simp add: abs_less_iff)
apply (insert linorder_linear [of "x-a" "b-x"], safe)
apply (rule_tac x = "x-a" in exI)
apply (rule_tac [2] x = "b-x" in exI, auto)
done

lemma lemma_interval: "[| a < x;  x < b |] ==>
        \<exists>d::real. 0 < d &  (\<forall>y. \<bar>x-y\<bar> < d --> a \<le> y & y \<le> b)"
apply (drule lemma_interval_lt, auto)
apply force
done

text{*Rolle's Theorem.
   If @{term f} is defined and continuous on the closed interval
   @{text "[a,b]"} and differentiable on the open interval @{text "(a,b)"},
   and @{term "f(a) = f(b)"},
   then there exists @{text "x0 \<in> (a,b)"} such that @{term "f'(x0) = 0"}*}
theorem Rolle:
  assumes lt: "a < b"
      and eq: "f(a) = f(b)"
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable (at x)"
  shows "\<exists>z::real. a < z & z < b & DERIV f z :> 0"
proof -
  have le: "a \<le> b" using lt by simp
  from isCont_eq_Ub [OF le con]
  obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x"
             and alex: "a \<le> x" and xleb: "x \<le> b"
    by blast
  from isCont_eq_Lb [OF le con]
  obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z"
              and alex': "a \<le> x'" and x'leb: "x' \<le> b"
    by blast
  show ?thesis
  proof cases
    assume axb: "a < x & x < b"
        --{*@{term f} attains its maximum within the interval*}
    hence ax: "a<x" and xb: "x<b" by arith + 
    from lemma_interval [OF ax xb]
    obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
      by blast
    hence bound': "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> f y \<le> f x" using x_max
      by blast
    from differentiableD [OF dif [OF axb]]
    obtain l where der: "DERIV f x :> l" ..
    have "l=0" by (rule DERIV_local_max [OF der d bound'])
        --{*the derivative at a local maximum is zero*}
    thus ?thesis using ax xb der by auto
  next
    assume notaxb: "~ (a < x & x < b)"
    hence xeqab: "x=a | x=b" using alex xleb by arith
    hence fb_eq_fx: "f b = f x" by (auto simp add: eq)
    show ?thesis
    proof cases
      assume ax'b: "a < x' & x' < b"
        --{*@{term f} attains its minimum within the interval*}
      hence ax': "a<x'" and x'b: "x'<b" by arith+ 
      from lemma_interval [OF ax' x'b]
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
  by blast
      hence bound': "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> f x' \<le> f y" using x'_min
  by blast
      from differentiableD [OF dif [OF ax'b]]
      obtain l where der: "DERIV f x' :> l" ..
      have "l=0" by (rule DERIV_local_min [OF der d bound'])
        --{*the derivative at a local minimum is zero*}
      thus ?thesis using ax' x'b der by auto
    next
      assume notax'b: "~ (a < x' & x' < b)"
        --{*@{term f} is constant througout the interval*}
      hence x'eqab: "x'=a | x'=b" using alex' x'leb by arith
      hence fb_eq_fx': "f b = f x'" by (auto simp add: eq)
      from dense [OF lt]
      obtain r where ar: "a < r" and rb: "r < b" by blast
      from lemma_interval [OF ar rb]
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
  by blast
      have eq_fb: "\<forall>z. a \<le> z --> z \<le> b --> f z = f b"
      proof (clarify)
        fix z::real
        assume az: "a \<le> z" and zb: "z \<le> b"
        show "f z = f b"
        proof (rule order_antisym)
          show "f z \<le> f b" by (simp add: fb_eq_fx x_max az zb)
          show "f b \<le> f z" by (simp add: fb_eq_fx' x'_min az zb)
        qed
      qed
      have bound': "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> f r = f y"
      proof (intro strip)
        fix y::real
        assume lt: "\<bar>r-y\<bar> < d"
        hence "f y = f b" by (simp add: eq_fb bound)
        thus "f r = f y" by (simp add: eq_fb ar rb order_less_imp_le)
      qed
      from differentiableD [OF dif [OF conjI [OF ar rb]]]
      obtain l where der: "DERIV f r :> l" ..
      have "l=0" by (rule DERIV_local_const [OF der d bound'])
        --{*the derivative of a constant function is zero*}
      thus ?thesis using ar rb der by auto
    qed
  qed
qed


subsection{*Mean Value Theorem*}

lemma lemma_MVT:
     "f a - (f b - f a)/(b-a) * a = f b - (f b - f a)/(b-a) * (b::real)"
  by (cases "a = b") (simp_all add: field_simps)

theorem MVT:
  assumes lt:  "a < b"
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable (at x)"
  shows "\<exists>l z::real. a < z & z < b & DERIV f z :> l &
                   (f(b) - f(a) = (b-a) * l)"
proof -
  let ?F = "%x. f x - ((f b - f a) / (b-a)) * x"
  have contF: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x"
    using con by (fast intro: continuous_intros)
  have difF: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable (at x)"
  proof (clarify)
    fix x::real
    assume ax: "a < x" and xb: "x < b"
    from differentiableD [OF dif [OF conjI [OF ax xb]]]
    obtain l where der: "DERIV f x :> l" ..
    show "?F differentiable (at x)"
      by (rule differentiableI [where D = "l - (f b - f a)/(b-a)"],
          blast intro: DERIV_diff DERIV_cmult_Id der)
  qed
  from Rolle [where f = ?F, OF lt lemma_MVT contF difF]
  obtain z where az: "a < z" and zb: "z < b" and der: "DERIV ?F z :> 0"
    by blast
  have "DERIV (%x. ((f b - f a)/(b-a)) * x) z :> (f b - f a)/(b-a)"
    by (rule DERIV_cmult_Id)
  hence derF: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z
                   :> 0 + (f b - f a) / (b - a)"
    by (rule DERIV_add [OF der])
  show ?thesis
  proof (intro exI conjI)
    show "a < z" using az .
    show "z < b" using zb .
    show "f b - f a = (b - a) * ((f b - f a)/(b-a))" by (simp)
    show "DERIV f z :> ((f b - f a)/(b-a))"  using derF by simp
  qed
qed

lemma MVT2:
     "[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
      ==> \<exists>z::real. a < z & z < b & (f b - f a = (b - a) * f'(z))"
apply (drule MVT)
apply (blast intro: DERIV_isCont)
apply (force dest: order_less_imp_le simp add: real_differentiable_def)
apply (blast dest: DERIV_unique order_less_imp_le)
done


text{*A function is constant if its derivative is 0 over an interval.*}

lemma DERIV_isconst_end:
  fixes f :: "real => real"
  shows "[| a < b;
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
        ==> f b = f a"
apply (drule MVT, assumption)
apply (blast intro: differentiableI)
apply (auto dest!: DERIV_unique simp add: diff_eq_eq)
done

lemma DERIV_isconst1:
  fixes f :: "real => real"
  shows "[| a < b;
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
        ==> \<forall>x. a \<le> x & x \<le> b --> f x = f a"
apply safe
apply (drule_tac x = a in order_le_imp_less_or_eq, safe)
apply (drule_tac b = x in DERIV_isconst_end, auto)
done

lemma DERIV_isconst2:
  fixes f :: "real => real"
  shows "[| a < b;
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
         \<forall>x. a < x & x < b --> DERIV f x :> 0;
         a \<le> x; x \<le> b |]
        ==> f x = f a"
apply (blast dest: DERIV_isconst1)
done

lemma DERIV_isconst3: fixes a b x y :: real
  assumes "a < b" and "x \<in> {a <..< b}" and "y \<in> {a <..< b}"
  assumes derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
  shows "f x = f y"
proof (cases "x = y")
  case False
  let ?a = "min x y"
  let ?b = "max x y"
  
  have "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> DERIV f z :> 0"
  proof (rule allI, rule impI)
    fix z :: real assume "?a \<le> z \<and> z \<le> ?b"
    hence "a < z" and "z < b" using `x \<in> {a <..< b}` and `y \<in> {a <..< b}` by auto
    hence "z \<in> {a<..<b}" by auto
    thus "DERIV f z :> 0" by (rule derivable)
  qed
  hence isCont: "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> isCont f z"
    and DERIV: "\<forall>z. ?a < z \<and> z < ?b \<longrightarrow> DERIV f z :> 0" using DERIV_isCont by auto

  have "?a < ?b" using `x \<noteq> y` by auto
  from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]
  show ?thesis by auto
qed auto

lemma DERIV_isconst_all:
  fixes f :: "real => real"
  shows "\<forall>x. DERIV f x :> 0 ==> f(x) = f(y)"
apply (rule linorder_cases [of x y])
apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+
done

lemma DERIV_const_ratio_const:
  fixes f :: "real => real"
  shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a)) = (b-a) * k"
apply (rule linorder_cases [of a b], auto)
apply (drule_tac [!] f = f in MVT)
apply (auto dest: DERIV_isCont DERIV_unique simp add: real_differentiable_def)
apply (auto dest: DERIV_unique simp add: ring_distribs)
done

lemma DERIV_const_ratio_const2:
  fixes f :: "real => real"
  shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a))/(b-a) = k"
apply (rule_tac c1 = "b-a" in mult_right_cancel [THEN iffD1])
apply (auto dest!: DERIV_const_ratio_const simp add: mult.assoc)
done

lemma real_average_minus_first [simp]: "((a + b) /2 - a) = (b-a)/(2::real)"
by (simp)

lemma real_average_minus_second [simp]: "((b + a)/2 - a) = (b-a)/(2::real)"
by (simp)

text{*Gallileo's "trick": average velocity = av. of end velocities*}

lemma DERIV_const_average:
  fixes v :: "real => real"
  assumes neq: "a \<noteq> (b::real)"
      and der: "\<forall>x. DERIV v x :> k"
  shows "v ((a + b)/2) = (v a + v b)/2"
proof (cases rule: linorder_cases [of a b])
  case equal with neq show ?thesis by simp
next
  case less
  have "(v b - v a) / (b - a) = k"
    by (rule DERIV_const_ratio_const2 [OF neq der])
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
  moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
  ultimately show ?thesis using neq by force
next
  case greater
  have "(v b - v a) / (b - a) = k"
    by (rule DERIV_const_ratio_const2 [OF neq der])
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
  moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
  ultimately show ?thesis using neq by (force simp add: add.commute)
qed

(* A function with positive derivative is increasing. 
   A simple proof using the MVT, by Jeremy Avigad. And variants.
*)
lemma DERIV_pos_imp_increasing_open:
  fixes a::real and b::real and f::"real => real"
  assumes "a < b" and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (EX y. DERIV f x :> y & y > 0)"
      and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
  shows "f a < f b"
proof (rule ccontr)
  assume f: "~ f a < f b"
  have "EX l z. a < z & z < b & DERIV f z :> l
      & f b - f a = (b - a) * l"
    apply (rule MVT)
      using assms Deriv.differentiableI
      apply force+
    done
  then obtain l z where z: "a < z" "z < b" "DERIV f z :> l"
      and "f b - f a = (b - a) * l"
    by auto
  with assms f have "~(l > 0)"
    by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le)
  with assms z show False
    by (metis DERIV_unique)
qed

lemma DERIV_pos_imp_increasing:
  fixes a::real and b::real and f::"real => real"
  assumes "a < b" and "\<forall>x. a \<le> x & x \<le> b --> (EX y. DERIV f x :> y & y > 0)"
  shows "f a < f b"
by (metis DERIV_pos_imp_increasing_open [of a b f] assms DERIV_continuous less_imp_le)

lemma DERIV_nonneg_imp_nondecreasing:
  fixes a::real and b::real and f::"real => real"
  assumes "a \<le> b" and
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<ge> 0)"
  shows "f a \<le> f b"
proof (rule ccontr, cases "a = b")
  assume "~ f a \<le> f b" and "a = b"
  then show False by auto
next
  assume A: "~ f a \<le> f b"
  assume B: "a ~= b"
  with assms have "EX l z. a < z & z < b & DERIV f z :> l
      & f b - f a = (b - a) * l"
    apply -
    apply (rule MVT)
      apply auto
      apply (metis DERIV_isCont)
     apply (metis differentiableI less_le)
    done
  then obtain l z where z: "a < z" "z < b" "DERIV f z :> l"
      and C: "f b - f a = (b - a) * l"
    by auto
  with A have "a < b" "f b < f a" by auto
  with C have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps)
    (metis A add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl)
  with assms z show False
    by (metis DERIV_unique order_less_imp_le)
qed

lemma DERIV_neg_imp_decreasing_open:
  fixes a::real and b::real and f::"real => real"
  assumes "a < b" and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (EX y. DERIV f x :> y & y < 0)"
      and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
  shows "f a > f b"
proof -
  have "(%x. -f x) a < (%x. -f x) b"
    apply (rule DERIV_pos_imp_increasing_open [of a b "%x. -f x"])
    using assms
    apply auto
    apply (metis field_differentiable_minus neg_0_less_iff_less)
    done
  thus ?thesis
    by simp
qed

lemma DERIV_neg_imp_decreasing:
  fixes a::real and b::real and f::"real => real"
  assumes "a < b" and
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y < 0)"
  shows "f a > f b"
by (metis DERIV_neg_imp_decreasing_open [of a b f] assms DERIV_continuous less_imp_le)

lemma DERIV_nonpos_imp_nonincreasing:
  fixes a::real and b::real and f::"real => real"
  assumes "a \<le> b" and
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<le> 0)"
  shows "f a \<ge> f b"
proof -
  have "(%x. -f x) a \<le> (%x. -f x) b"
    apply (rule DERIV_nonneg_imp_nondecreasing [of a b "%x. -f x"])
    using assms
    apply auto
    apply (metis DERIV_minus neg_0_le_iff_le)
    done
  thus ?thesis
    by simp
qed

lemma DERIV_pos_imp_increasing_at_bot:
  fixes f :: "real => real"
  assumes "\<And>x. x \<le> b \<Longrightarrow> (EX y. DERIV f x :> y & y > 0)"
      and lim: "(f ---> flim) at_bot"
  shows "flim < f b"
proof -
  have "flim \<le> f (b - 1)"
    apply (rule tendsto_ge_const [OF _ lim])
    apply (auto simp: trivial_limit_at_bot_linorder eventually_at_bot_linorder)
    apply (rule_tac x="b - 2" in exI)
    apply (force intro: order.strict_implies_order DERIV_pos_imp_increasing [where f=f] assms)
    done
  also have "... < f b"
    by (force intro: DERIV_pos_imp_increasing [where f=f] assms)
  finally show ?thesis .
qed

lemma DERIV_neg_imp_decreasing_at_top:
  fixes f :: "real => real"
  assumes der: "\<And>x. x \<ge> b \<Longrightarrow> (EX y. DERIV f x :> y & y < 0)"
      and lim: "(f ---> flim) at_top"
  shows "flim < f b"
  apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\<lambda>i. f (-i)" and b = "-b", simplified])
  apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less)
  apply (metis filterlim_at_top_mirror lim)
  done

text {* Derivative of inverse function *}

lemma DERIV_inverse_function:
  fixes f g :: "real \<Rightarrow> real"
  assumes der: "DERIV f (g x) :> D"
  assumes neq: "D \<noteq> 0"
  assumes a: "a < x" and b: "x < b"
  assumes inj: "\<forall>y. a < y \<and> y < b \<longrightarrow> f (g y) = y"
  assumes cont: "isCont g x"
  shows "DERIV g x :> inverse D"
unfolding DERIV_iff2
proof (rule LIM_equal2)
  show "0 < min (x - a) (b - x)"
    using a b by arith 
next
  fix y
  assume "norm (y - x) < min (x - a) (b - x)"
  hence "a < y" and "y < b" 
    by (simp_all add: abs_less_iff)
  thus "(g y - g x) / (y - x) =
        inverse ((f (g y) - x) / (g y - g x))"
    by (simp add: inj)
next
  have "(\<lambda>z. (f z - f (g x)) / (z - g x)) -- g x --> D"
    by (rule der [unfolded DERIV_iff2])
  hence 1: "(\<lambda>z. (f z - x) / (z - g x)) -- g x --> D"
    using inj a b by simp
  have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"
  proof (rule exI, safe)
    show "0 < min (x - a) (b - x)"
      using a b by simp
  next
    fix y
    assume "norm (y - x) < min (x - a) (b - x)"
    hence y: "a < y" "y < b"
      by (simp_all add: abs_less_iff)
    assume "g y = g x"
    hence "f (g y) = f (g x)" by simp
    hence "y = x" using inj y a b by simp
    also assume "y \<noteq> x"
    finally show False by simp
  qed
  have "(\<lambda>y. (f (g y) - x) / (g y - g x)) -- x --> D"
    using cont 1 2 by (rule isCont_LIM_compose2)
  thus "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x)))
        -- x --> inverse D"
    using neq by (rule tendsto_inverse)
qed

subsection {* Generalized Mean Value Theorem *}

theorem GMVT:
  fixes a b :: real
  assumes alb: "a < b"
    and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
    and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)"
    and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"
    and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable (at x)"
  shows "\<exists>g'c f'c c.
    DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> ((f b - f a) * g'c) = ((g b - g a) * f'c)"
proof -
  let ?h = "\<lambda>x. (f b - f a)*(g x) - (g b - g a)*(f x)"
  from assms have "a < b" by simp
  moreover have "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?h x"
    using fc gc by simp
  moreover have "\<forall>x. a < x \<and> x < b \<longrightarrow> ?h differentiable (at x)"
    using fd gd by simp
  ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" by (rule MVT)
  then obtain l where ldef: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..
  then obtain c where cdef: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..

  from cdef have cint: "a < c \<and> c < b" by auto
  with gd have "g differentiable (at c)" by simp
  hence "\<exists>D. DERIV g c :> D" by (rule differentiableD)
  then obtain g'c where g'cdef: "DERIV g c :> g'c" ..

  from cdef have "a < c \<and> c < b" by auto
  with fd have "f differentiable (at c)" by simp
  hence "\<exists>D. DERIV f c :> D" by (rule differentiableD)
  then obtain f'c where f'cdef: "DERIV f c :> f'c" ..

  from cdef have "DERIV ?h c :> l" by auto
  moreover have "DERIV ?h c :>  g'c * (f b - f a) - f'c * (g b - g a)"
    using g'cdef f'cdef by (auto intro!: derivative_eq_intros)
  ultimately have leq: "l =  g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)

  {
    from cdef have "?h b - ?h a = (b - a) * l" by auto
    also from leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
    finally have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
  }
  moreover
  {
    have "?h b - ?h a =
         ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -
          ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"
      by (simp add: algebra_simps)
    hence "?h b - ?h a = 0" by auto
  }
  ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto
  with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp
  hence "g'c * (f b - f a) = f'c * (g b - g a)" by simp
  hence "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps)

  with g'cdef f'cdef cint show ?thesis by auto
qed

lemma GMVT':
  fixes f g :: "real \<Rightarrow> real"
  assumes "a < b"
  assumes isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z"
  assumes isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z"
  assumes DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)"
  assumes DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)"
  shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c"
proof -
  have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and>
    a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
    using assms by (intro GMVT) (force simp: real_differentiable_def)+
  then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c"
    using DERIV_f DERIV_g by (force dest: DERIV_unique)
  then show ?thesis
    by auto
qed


subsection {* L'Hopitals rule *}

lemma isCont_If_ge:
  fixes a :: "'a :: linorder_topology"
  shows "continuous (at_left a) g \<Longrightarrow> (f ---> g a) (at_right a) \<Longrightarrow> isCont (\<lambda>x. if x \<le> a then g x else f x) a"
  unfolding isCont_def continuous_within
  apply (intro filterlim_split_at)
  apply (subst filterlim_cong[OF refl refl, where g=g])
  apply (simp_all add: eventually_at_filter less_le)
  apply (subst filterlim_cong[OF refl refl, where g=f])
  apply (simp_all add: eventually_at_filter less_le)
  done

lemma lhopital_right_0:
  fixes f0 g0 :: "real \<Rightarrow> real"
  assumes f_0: "(f0 ---> 0) (at_right 0)"
  assumes g_0: "(g0 ---> 0) (at_right 0)"
  assumes ev:
    "eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)"
    "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
    "eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)"
    "eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)"
  assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) (at_right 0)"
  shows "((\<lambda> x. f0 x / g0 x) ---> x) (at_right 0)"
proof -
  def f \<equiv> "\<lambda>x. if x \<le> 0 then 0 else f0 x"
  then have "f 0 = 0" by simp

  def g \<equiv> "\<lambda>x. if x \<le> 0 then 0 else g0 x"
  then have "g 0 = 0" by simp

  have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and>
      DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)"
    using ev by eventually_elim auto
  then obtain a where [arith]: "0 < a"
    and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0"
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
    and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)"
    and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)"
    unfolding eventually_at by (auto simp: dist_real_def)

  have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0"
    using g0_neq_0 by (simp add: g_def)

  { fix x assume x: "0 < x" "x < a" then have "DERIV f x :> (f' x)"
      by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]])
         (auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) }
  note f = this

  { fix x assume x: "0 < x" "x < a" then have "DERIV g x :> (g' x)"
      by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]])
         (auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) }
  note g = this

  have "isCont f 0"
    unfolding f_def by (intro isCont_If_ge f_0 continuous_const)

  have "isCont g 0"
    unfolding g_def by (intro isCont_If_ge g_0 continuous_const)

  have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
  proof (rule bchoice, rule)
    fix x assume "x \<in> {0 <..< a}"
    then have x[arith]: "0 < x" "x < a" by auto
    with g'_neq_0 g_neq_0 `g 0 = 0` have g': "\<And>x. 0 < x \<Longrightarrow> x < a  \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x"
      by auto
    have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x"
      using `isCont f 0` f by (auto intro: DERIV_isCont simp: le_less)
    moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x"
      using `isCont g 0` g by (auto intro: DERIV_isCont simp: le_less)
    ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c"
      using f g `x < a` by (intro GMVT') auto
    then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c"
      by blast
    moreover
    from * g'(1)[of c] g'(2) have "(f x - f 0)  / (g x - g 0) = f' c / g' c"
      by (simp add: field_simps)
    ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y"
      using `f 0 = 0` `g 0 = 0` by (auto intro!: exI[of _ c])
  qed
  then obtain \<zeta> where "\<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)" ..
  then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)"
    unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def)
  moreover
  from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)"
    by eventually_elim auto
  then have "((\<lambda>x. norm (\<zeta> x)) ---> 0) (at_right 0)"
    by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"])
       (auto intro: tendsto_const tendsto_ident_at)
  then have "(\<zeta> ---> 0) (at_right 0)"
    by (rule tendsto_norm_zero_cancel)
  with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)"
    by (auto elim!: eventually_elim1 simp: filterlim_at)
  from this lim have "((\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) ---> x) (at_right 0)"
    by (rule_tac filterlim_compose[of _ _ _ \<zeta>])
  ultimately have "((\<lambda>t. f t / g t) ---> x) (at_right 0)" (is ?P)
    by (rule_tac filterlim_cong[THEN iffD1, OF refl refl])
       (auto elim: eventually_elim1)
  also have "?P \<longleftrightarrow> ?thesis"
    by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter)
  finally show ?thesis .
qed

lemma lhopital_right:
  "((f::real \<Rightarrow> real) ---> 0) (at_right x) \<Longrightarrow> (g ---> 0) (at_right x) \<Longrightarrow>
    eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow>
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_right x) \<Longrightarrow>
  ((\<lambda> x. f x / g x) ---> y) (at_right x)"
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
  by (rule lhopital_right_0)

lemma lhopital_left:
  "((f::real \<Rightarrow> real) ---> 0) (at_left x) \<Longrightarrow> (g ---> 0) (at_left x) \<Longrightarrow>
    eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow>
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_left x) \<Longrightarrow>
  ((\<lambda> x. f x / g x) ---> y) (at_left x)"
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
  by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)

lemma lhopital:
  "((f::real \<Rightarrow> real) ---> 0) (at x) \<Longrightarrow> (g ---> 0) (at x) \<Longrightarrow>
    eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow>
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
    ((\<lambda> x. (f' x / g' x)) ---> y) (at x) \<Longrightarrow>
  ((\<lambda> x. f x / g x) ---> y) (at x)"
  unfolding eventually_at_split filterlim_at_split
  by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f'])

lemma lhopital_right_0_at_top:
  fixes f g :: "real \<Rightarrow> real"
  assumes g_0: "LIM x at_right 0. g x :> at_top"
  assumes ev:
    "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
    "eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)"
    "eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)"
  assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) (at_right 0)"
  shows "((\<lambda> x. f x / g x) ---> x) (at_right 0)"
  unfolding tendsto_iff
proof safe
  fix e :: real assume "0 < e"

  with lim[unfolded tendsto_iff, rule_format, of "e / 4"]
  have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)" by simp
  from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]]
  obtain a where [arith]: "0 < a"
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
    and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)"
    and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)"
    and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4"
    unfolding eventually_at_le by (auto simp: dist_real_def)
    

  from Df have
    "eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)"
    unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def)

  moreover
  have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)"
    using g_0 by (auto elim: eventually_elim1 simp: filterlim_at_top_dense)

  moreover
  have inv_g: "((\<lambda>x. inverse (g x)) ---> 0) (at_right 0)"
    using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl]
    by (rule filterlim_compose)
  then have "((\<lambda>x. norm (1 - g a * inverse (g x))) ---> norm (1 - g a * 0)) (at_right 0)"
    by (intro tendsto_intros)
  then have "((\<lambda>x. norm (1 - g a / g x)) ---> 1) (at_right 0)"
    by (simp add: inverse_eq_divide)
  from this[unfolded tendsto_iff, rule_format, of 1]
  have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)"
    by (auto elim!: eventually_elim1 simp: dist_real_def)

  moreover
  from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) ---> norm ((f a - x * g a) * 0)) (at_right 0)"
    by (intro tendsto_intros)
  then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) ---> 0) (at_right 0)"
    by (simp add: inverse_eq_divide)
  from this[unfolded tendsto_iff, rule_format, of "e / 2"] `0 < e`
  have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)"
    by (auto simp: dist_real_def)

  ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)"
  proof eventually_elim
    fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t"
    assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2"

    have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y"
      using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+
    then obtain y where [arith]: "t < y" "y < a"
      and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y"
      by blast
    from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y"
      using `g a < g t` g'_neq_0[of y] by (auto simp add: field_simps)

    have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t"
      by (simp add: field_simps)
    have "norm (f t / g t - x) \<le>
        norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)"
      unfolding * by (rule norm_triangle_ineq)
    also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)"
      by (simp add: abs_mult D_eq dist_real_def)
    also have "\<dots> < (e / 4) * 2 + e / 2"
      using ineq Df[of y] `0 < e` by (intro add_le_less_mono mult_mono) auto
    finally show "dist (f t / g t) x < e"
      by (simp add: dist_real_def)
  qed
qed

lemma lhopital_right_at_top:
  "LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_right x) \<Longrightarrow>
    ((\<lambda> x. f x / g x) ---> y) (at_right x)"
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
  by (rule lhopital_right_0_at_top)

lemma lhopital_left_at_top:
  "LIM x at_left x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_left x) \<Longrightarrow>
    ((\<lambda> x. f x / g x) ---> y) (at_left x)"
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
  by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)

lemma lhopital_at_top:
  "LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
    ((\<lambda> x. (f' x / g' x)) ---> y) (at x) \<Longrightarrow>
    ((\<lambda> x. f x / g x) ---> y) (at x)"
  unfolding eventually_at_split filterlim_at_split
  by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f'])

lemma lhospital_at_top_at_top:
  fixes f g :: "real \<Rightarrow> real"
  assumes g_0: "LIM x at_top. g x :> at_top"
  assumes g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top"
  assumes Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top"
  assumes Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top"
  assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) at_top"
  shows "((\<lambda> x. f x / g x) ---> x) at_top"
  unfolding filterlim_at_top_to_right
proof (rule lhopital_right_0_at_top)
  let ?F = "\<lambda>x. f (inverse x)"
  let ?G = "\<lambda>x. g (inverse x)"
  let ?R = "at_right (0::real)"
  let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))"

  show "LIM x ?R. ?G x :> at_top"
    using g_0 unfolding filterlim_at_top_to_right .

  show "eventually (\<lambda>x. DERIV ?G x  :> ?D g' x) ?R"
    unfolding eventually_at_right_to_top
    using Dg eventually_ge_at_top[where c="1::real"]
    apply eventually_elim
    apply (rule DERIV_cong)
    apply (rule DERIV_chain'[where f=inverse])
    apply (auto intro!:  DERIV_inverse)
    done

  show "eventually (\<lambda>x. DERIV ?F x  :> ?D f' x) ?R"
    unfolding eventually_at_right_to_top
    using Df eventually_ge_at_top[where c="1::real"]
    apply eventually_elim
    apply (rule DERIV_cong)
    apply (rule DERIV_chain'[where f=inverse])
    apply (auto intro!:  DERIV_inverse)
    done

  show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R"
    unfolding eventually_at_right_to_top
    using g' eventually_ge_at_top[where c="1::real"]
    by eventually_elim auto
    
  show "((\<lambda>x. ?D f' x / ?D g' x) ---> x) ?R"
    unfolding filterlim_at_right_to_top
    apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim])
    using eventually_ge_at_top[where c="1::real"]
    by eventually_elim simp
qed

end