(* Title: Pure/global_theory.ML
Author: Makarius
Global theory content: stored facts.
*)
signature GLOBAL_THEORY =
sig
val facts_of: theory -> Facts.T
val fact_space: theory -> Name_Space.T
val check_fact: theory -> xstring * Position.T -> string
val intern_fact: theory -> xstring -> string
val defined_fact: theory -> string -> bool
val alias_fact: binding -> string -> theory -> theory
val hide_fact: bool -> string -> theory -> theory
val dest_thms: bool -> theory list -> theory -> (Thm_Name.T * thm) list
val get_thm_names: theory -> Thm_Name.T Inttab.table
val dest_thm_names: theory -> (Proofterm.thm_id * Thm_Name.T) list
val lookup_thm_id: theory -> Proofterm.thm_id -> Thm_Name.T option
val lookup_thm: theory -> thm -> (Proofterm.thm_id * Thm_Name.T) option
val get_thms: theory -> xstring -> thm list
val get_thm: theory -> xstring -> thm
val transfer_theories: theory -> thm -> thm
val all_thms_of: theory -> bool -> (string * thm) list
val get_thm_name: theory -> Thm_Name.T * Position.T -> thm
val burrow_fact: ('a list -> 'b list) -> ('a list * 'c) list -> ('b list * 'c) list
val register_proofs_lazy: string * Position.T -> thm list lazy -> theory -> thm list lazy * theory
val register_proofs: string * Position.T -> thm list -> theory -> thm list * theory
val name_multi: string * Position.T -> thm list -> ((string * Position.T) * thm) list
type name_flags
val unnamed: name_flags
val official1: name_flags
val official2: name_flags
val unofficial1: name_flags
val unofficial2: name_flags
val name_thm: name_flags -> string * Position.T -> thm -> thm
val name_thms: name_flags -> string * Position.T -> thm list -> thm list
val check_thms_lazy: thm list lazy -> thm list lazy
val add_thms_lazy: string -> (binding * thm list lazy) -> theory -> theory
val store_thm: binding * thm -> theory -> thm * theory
val store_thm_open: binding * thm -> theory -> thm * theory
val add_thms: ((binding * thm) * attribute list) list -> theory -> thm list * theory
val add_thm: (binding * thm) * attribute list -> theory -> thm * theory
val add_thmss: ((binding * thm list) * attribute list) list -> theory -> thm list list * theory
val add_thms_dynamic': Context.generic -> binding * (Context.generic -> thm list) ->
theory -> string * theory
val add_thms_dynamic: binding * (Context.generic -> thm list) -> theory -> theory
val note_thms: string -> Thm.binding * (thm list * attribute list) list -> theory ->
(string * thm list) * theory
val note_thmss: string -> (Thm.binding * (thm list * attribute list) list) list -> theory ->
(string * thm list) list * theory
val add_def: binding * term -> theory -> thm * theory
val add_def_overloaded: binding * term -> theory -> thm * theory
val add_def_unchecked: binding * term -> theory -> thm * theory
val add_def_unchecked_overloaded: binding * term -> theory -> thm * theory
end;
structure Global_Theory: GLOBAL_THEORY =
struct
(** theory data **)
structure Data = Theory_Data
(
type T = Facts.T * Thm_Name.T Inttab.table lazy option;
val empty: T = (Facts.empty, NONE);
fun merge ((facts1, _), (facts2, _)) = (Facts.merge (facts1, facts2), NONE);
);
(* facts *)
val facts_of = #1 o Data.get;
val map_facts = Data.map o apfst;
val fact_space = Facts.space_of o facts_of;
fun check_fact thy = Facts.check (Context.Theory thy) (facts_of thy);
val intern_fact = Facts.intern o facts_of;
val defined_fact = Facts.defined o facts_of;
fun alias_fact binding name thy =
map_facts (Facts.alias (Sign.naming_of thy) binding name) thy;
fun hide_fact fully name = map_facts (Facts.hide fully name);
fun dest_thms verbose prev_thys thy =
Facts.dest_static verbose (map facts_of prev_thys) (facts_of thy)
|> maps (uncurry Thm_Name.make_list);
(* thm_name vs. derivation_id *)
val thm_names_of = #2 o Data.get;
val map_thm_names = Data.map o apsnd;
fun make_thm_names thy =
(dest_thms true (Theory.parents_of thy) thy, Inttab.empty)
|-> fold (fn (thm_name, thm) => fn thm_names =>
(case Thm.derivation_id (Thm.transfer thy thm) of
NONE => thm_names
| SOME {serial, theory_name} =>
if Context.theory_long_name thy <> theory_name then
raise THM ("Bad theory name for derivation", 0, [thm])
else
(case Inttab.lookup thm_names serial of
SOME thm_name' =>
raise THM ("Duplicate use of derivation identity for " ^
Thm_Name.print thm_name ^ " vs. " ^
Thm_Name.print thm_name', 0, [thm])
| NONE => Inttab.update (serial, thm_name) thm_names)));
fun lazy_thm_names thy =
(case thm_names_of thy of
NONE => Lazy.lazy (fn () => make_thm_names thy)
| SOME lazy_tab => lazy_tab);
val get_thm_names = Lazy.force o lazy_thm_names;
fun dest_thm_names thy =
let
val theory_name = Context.theory_long_name thy;
fun thm_id i = Proofterm.make_thm_id (i, theory_name);
in Inttab.fold_rev (fn (i, thm_name) => cons (thm_id i, thm_name)) (get_thm_names thy) [] end;
fun lookup_thm_id thy =
let
val theories =
Symtab.build (Theory.nodes_of thy |> fold (fn thy' =>
Symtab.update (Context.theory_long_name thy', lazy_thm_names thy')));
fun lookup (thm_id: Proofterm.thm_id) =
(case Symtab.lookup theories (#theory_name thm_id) of
NONE => NONE
| SOME lazy_tab => Inttab.lookup (Lazy.force lazy_tab) (#serial thm_id));
in lookup end;
fun lookup_thm thy =
let val lookup = lookup_thm_id thy in
fn thm =>
(case Thm.derivation_id thm of
NONE => NONE
| SOME thm_id =>
(case lookup thm_id of
NONE => NONE
| SOME thm_name => SOME (thm_id, thm_name)))
end;
val _ =
Theory.setup
(Theory.at_begin (fn thy =>
if is_none (thm_names_of thy) then NONE
else SOME (map_thm_names (K NONE) thy)) #>
Theory.at_end (fn thy =>
if is_some (thm_names_of thy) then NONE
else
let
val lazy_tab =
if Future.proofs_enabled 1
then Lazy.lazy (fn () => make_thm_names thy)
else Lazy.value (make_thm_names thy);
in SOME (map_thm_names (K (SOME lazy_tab)) thy) end));
(* retrieve theorems *)
fun get_thms thy xname =
#thms (Facts.retrieve (Context.Theory thy) (facts_of thy) (xname, Position.none));
fun get_thm thy xname =
Facts.the_single (xname, Position.none) (get_thms thy xname);
fun transfer_theories thy =
let
val theories =
Symtab.build (Theory.nodes_of thy |> fold (fn thy' =>
Symtab.update (Context.theory_long_name thy', thy')));
fun transfer th =
Thm.transfer (the_default thy (Symtab.lookup theories (Thm.theory_long_name th))) th;
in transfer end;
fun all_thms_of thy verbose =
let
val transfer = transfer_theories thy;
val facts = facts_of thy;
fun add (name, ths) =
if not verbose andalso Facts.is_concealed facts name then I
else append (map (`(Thm.get_name_hint) o transfer) ths);
in Facts.fold_static add facts [] end;
fun get_thm_name thy ((name, i), pos) =
let
val facts = facts_of thy;
fun print_name () =
Facts.markup_extern (Proof_Context.init_global thy) facts name |-> Markup.markup;
in
(case (Facts.lookup (Context.Theory thy) facts name, i) of
(NONE, _) => error ("Undefined fact " ^ quote (print_name ()) ^ Position.here pos)
| (SOME {thms = [thm], ...}, 0) => thm
| (SOME {thms, ...}, 0) => Facts.err_single (print_name (), pos) thms
| (SOME {thms, ...}, _) =>
if i > 0 andalso i <= length thms then nth thms (i - 1)
else Facts.err_selection (print_name (), pos) i thms)
|> Thm.transfer thy
end;
(** store theorems **)
(* fact specifications *)
fun burrow_fact f = split_list #>> burrow f #> op ~~;
(* register proofs *)
fun check_thms_lazy (thms: thm list lazy) =
if Proofterm.any_proofs_enabled () orelse Options.default_bool "strict_facts"
then Lazy.force_value thms else thms;
fun register_proofs_lazy (name, pos) (thms: thm list Lazy.lazy) thy =
let
val (thms', thy') =
if name <> "" andalso Proofterm.zproof_enabled (Proofterm.get_proofs_level ()) then
fold_map (fn (a, th) => Thm.store_zproof (a, pos) th)
(Thm_Name.make_list name (Lazy.force thms)) thy
|>> Lazy.value
else (check_thms_lazy thms, thy);
in (thms', Thm.register_proofs thms' thy') end;
fun register_proofs name thms =
register_proofs_lazy name (Lazy.value thms) #>> Lazy.force;
(* name theorems *)
fun name_multi (name, pos) =
Thm_Name.make_list name #> (map o apfst) (fn thm_name => (Thm_Name.flatten thm_name, pos));
abstype name_flags = No_Name_Flags | Name_Flags of {post: bool, official: bool}
with
val unnamed = No_Name_Flags;
val official1 = Name_Flags {post = false, official = true};
val official2 = Name_Flags {post = true, official = true};
val unofficial1 = Name_Flags {post = false, official = false};
val unofficial2 = Name_Flags {post = true, official = false};
fun name_thm name_flags (name, pos) =
Thm.solve_constraints #> (fn thm =>
(case name_flags of
No_Name_Flags => thm
| Name_Flags {post, official} =>
thm
|> (official andalso (post orelse Thm.raw_derivation_name thm = "")) ?
Thm.name_derivation (name, pos)
|> (name <> "" andalso (post orelse not (Thm.has_name_hint thm))) ?
Thm.put_name_hint name));
fun name_thms name_flags name_pos =
name_multi name_pos #> map (uncurry (name_thm name_flags));
end;
(* store theorems and proofs *)
fun add_facts (b, fact) thy =
let
val (full_name, pos) = Sign.bind_name thy b;
fun check fact =
fact |> map_index (fn (i, thm) =>
let
fun err msg =
error ("Malformed global fact " ^
quote (full_name ^
(if length fact = 1 then "" else "(" ^ string_of_int (i + 1) ^ ")")) ^
Position.here pos ^ "\n" ^ msg);
val prop = Thm.plain_prop_of thm
handle THM _ =>
thm
|> Thm.check_hyps (Context.Theory thy)
|> Thm.full_prop_of;
in
ignore (Logic.unvarify_global (Term_Subst.zero_var_indexes prop))
handle TYPE (msg, _, _) => err msg
| TERM (msg, _) => err msg
| ERROR msg => err msg
end);
val arg = (b, Lazy.map_finished (tap check) fact);
in
thy |> map_facts (Facts.add_static (Context.Theory thy) {strict = true, index = false} arg #> #2)
end;
fun add_thms_lazy kind (b, thms) thy =
let val (name, pos) = Sign.bind_name thy b in
if name = "" then register_proofs_lazy (name, pos) thms thy |> #2
else
register_proofs_lazy (name, pos)
(Lazy.map_finished (name_thms official1 (name, pos) #> map (Thm.kind_rule kind)) thms) thy
|-> curry add_facts b
end;
(* apply theorems and attributes *)
local
val app_facts =
fold_maps (fn (thms, atts) => fn thy =>
fold_map (Thm.theory_attributes atts) (map (Thm.transfer thy) thms) thy);
in
fun apply_facts name_flags1 name_flags2 (b, facts) thy =
let val (name, pos) = Sign.bind_name thy b in
if name = "" then app_facts facts thy |-> register_proofs (name, pos)
else
let
val name_pos = Sign.bind_name thy b;
val (thms', thy') = thy
|> app_facts (map (apfst (name_thms name_flags1 name_pos)) facts)
|>> name_thms name_flags2 name_pos |-> register_proofs (name, pos);
val thy'' = thy' |> add_facts (b, Lazy.value thms');
in (map (Thm.transfer thy'') thms', thy'') end
end;
end;
(* store_thm *)
fun store_thm (b, th) =
apply_facts official1 official2 (b, [([th], [])]) #>> the_single;
fun store_thm_open (b, th) =
apply_facts unofficial1 unofficial2 (b, [([th], [])]) #>> the_single;
(* add_thms(s) *)
val add_thmss =
fold_map (fn ((b, thms), atts) => apply_facts official1 official2 (b, [(thms, atts)]));
fun add_thms args =
add_thmss (map (apfst (apsnd single)) args) #>> map the_single;
val add_thm = yield_singleton add_thms;
(* dynamic theorems *)
fun add_thms_dynamic' context arg thy =
let val (name, facts') = Facts.add_dynamic context arg (facts_of thy)
in (name, map_facts (K facts') thy) end;
fun add_thms_dynamic arg thy =
add_thms_dynamic' (Context.Theory thy) arg thy |> snd;
(* note_thmss *)
fun note_thms kind ((b, more_atts), facts) thy =
let
val name = Sign.full_name thy b;
val facts' = facts |> map (apsnd (fn atts => surround (Thm.kind kind) (atts @ more_atts)));
val (thms', thy') = thy |> apply_facts official1 official2 (b, facts');
in ((name, thms'), thy') end;
val note_thmss = fold_map o note_thms;
(* old-style defs *)
local
fun add unchecked overloaded (b, prop) thy =
let
val context = Defs.global_context thy;
val ((_, def), thy') = Thm.add_def context unchecked overloaded (b, prop) thy;
val thm = def
|> Thm.forall_intr_frees
|> Thm.forall_elim_vars 0
|> Thm.varifyT_global;
in thy' |> apply_facts unnamed official2 (b, [([thm], [])]) |>> the_single end;
in
val add_def = add false false;
val add_def_overloaded = add false true;
val add_def_unchecked = add true false;
val add_def_unchecked_overloaded = add true true;
end;
end;