(* Title: ZF/Finite.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Finite powerset operator; finite function space
prove X:Fin(A) ==> |X| < nat
prove: b: Fin(A) ==> inj(b,b)<=surj(b,b)
*)
open Finite;
(*** Finite powerset operator ***)
goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
by (rtac lfp_mono 1);
by (REPEAT (rtac Fin.bnd_mono 1));
by (REPEAT (ares_tac (Pow_mono::basic_monos) 1));
qed "Fin_mono";
(* A : Fin(B) ==> A <= B *)
val FinD = Fin.dom_subset RS subsetD RS PowD;
(** Induction on finite sets **)
(*Discharging x~:y entails extra work*)
val major::prems = goal Finite.thy
"[| b: Fin(A); \
\ P(0); \
\ !!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y)) \
\ |] ==> P(b)";
by (rtac (major RS Fin.induct) 1);
by (excluded_middle_tac "a:b" 2);
by (etac (cons_absorb RS ssubst) 3 THEN assume_tac 3); (*backtracking!*)
by (REPEAT (ares_tac prems 1));
qed "Fin_induct";
(** Simplification for Fin **)
Addsimps Fin.intrs;
(*The union of two finite sets is finite.*)
goal Finite.thy
"!!b c. [| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)";
by (etac Fin_induct 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Un_cons])));
qed "Fin_UnI";
Addsimps [Fin_UnI];
(*The union of a set of finite sets is finite.*)
val [major] = goal Finite.thy "C : Fin(Fin(A)) ==> Union(C) : Fin(A)";
by (rtac (major RS Fin_induct) 1);
by (ALLGOALS Asm_simp_tac);
qed "Fin_UnionI";
(*Every subset of a finite set is finite.*)
goal Finite.thy "!!b A. b: Fin(A) ==> ALL z. z<=b --> z: Fin(A)";
by (etac Fin_induct 1);
by (simp_tac (simpset() addsimps [subset_empty_iff]) 1);
by (asm_simp_tac (simpset() addsimps subset_cons_iff::distrib_simps) 1);
by Safe_tac;
by (eres_inst_tac [("b","z")] (cons_Diff RS subst) 1);
by (Asm_simp_tac 1);
qed "Fin_subset_lemma";
goal Finite.thy "!!c b A. [| c<=b; b: Fin(A) |] ==> c: Fin(A)";
by (REPEAT (ares_tac [Fin_subset_lemma RS spec RS mp] 1));
qed "Fin_subset";
val major::prems = goal Finite.thy
"[| c: Fin(A); b: Fin(A); \
\ P(b); \
\ !!x y. [| x: A; y: Fin(A); x:y; P(y) |] ==> P(y-{x}) \
\ |] ==> c<=b --> P(b-c)";
by (rtac (major RS Fin_induct) 1);
by (stac Diff_cons 2);
by (ALLGOALS (asm_simp_tac (simpset() addsimps (prems@[cons_subset_iff,
Diff_subset RS Fin_subset]))));
qed "Fin_0_induct_lemma";
val prems = goal Finite.thy
"[| b: Fin(A); \
\ P(b); \
\ !!x y. [| x: A; y: Fin(A); x:y; P(y) |] ==> P(y-{x}) \
\ |] ==> P(0)";
by (rtac (Diff_cancel RS subst) 1);
by (rtac (Fin_0_induct_lemma RS mp) 1);
by (REPEAT (ares_tac (subset_refl::prems) 1));
qed "Fin_0_induct";
(*Functions from a finite ordinal*)
val prems = goal Finite.thy "n: nat ==> n->A <= Fin(nat*A)";
by (nat_ind_tac "n" prems 1);
by (simp_tac (simpset() addsimps [Pi_empty1, subset_iff, cons_iff]) 1);
by (asm_simp_tac (simpset() addsimps [succ_def, mem_not_refl RS cons_fun_eq]) 1);
by (fast_tac (claset() addSIs [Fin.consI]) 1);
qed "nat_fun_subset_Fin";
(*** Finite function space ***)
goalw Finite.thy FiniteFun.defs
"!!A B C D. [| A<=C; B<=D |] ==> A -||> B <= C -||> D";
by (rtac lfp_mono 1);
by (REPEAT (rtac FiniteFun.bnd_mono 1));
by (REPEAT (ares_tac (Fin_mono::Sigma_mono::basic_monos) 1));
qed "FiniteFun_mono";
goal Finite.thy "!!A B. A<=B ==> A -||> A <= B -||> B";
by (REPEAT (ares_tac [FiniteFun_mono] 1));
qed "FiniteFun_mono1";
goal Finite.thy "!!h. h: A -||>B ==> h: domain(h) -> B";
by (etac FiniteFun.induct 1);
by (simp_tac (simpset() addsimps [empty_fun, domain_0]) 1);
by (asm_simp_tac (simpset() addsimps [fun_extend3, domain_cons]) 1);
qed "FiniteFun_is_fun";
goal Finite.thy "!!h. h: A -||>B ==> domain(h) : Fin(A)";
by (etac FiniteFun.induct 1);
by (simp_tac (simpset() addsimps [domain_0]) 1);
by (asm_simp_tac (simpset() addsimps [domain_cons]) 1);
qed "FiniteFun_domain_Fin";
bind_thm ("FiniteFun_apply_type", FiniteFun_is_fun RS apply_type);
(*Every subset of a finite function is a finite function.*)
goal Finite.thy "!!b A. b: A-||>B ==> ALL z. z<=b --> z: A-||>B";
by (etac FiniteFun.induct 1);
by (simp_tac (simpset() addsimps subset_empty_iff::FiniteFun.intrs) 1);
by (asm_simp_tac (simpset() addsimps subset_cons_iff::distrib_simps) 1);
by Safe_tac;
by (eres_inst_tac [("b","z")] (cons_Diff RS subst) 1);
by (dtac (spec RS mp) 1 THEN assume_tac 1);
by (fast_tac (claset() addSIs FiniteFun.intrs) 1);
qed "FiniteFun_subset_lemma";
goal Finite.thy "!!c b A. [| c<=b; b: A-||>B |] ==> c: A-||>B";
by (REPEAT (ares_tac [FiniteFun_subset_lemma RS spec RS mp] 1));
qed "FiniteFun_subset";