simplified programming interface to define ML antiquotations -- NB: the transformed context ignores updates of the context parser;
added command 'print_ML_antiquotations';
(* Title: Tools/Code/code_scala.ML
Author: Florian Haftmann, TU Muenchen
Serializer for Scala.
*)
signature CODE_SCALA =
sig
val target: string
val setup: theory -> theory
end;
structure Code_Scala : CODE_SCALA =
struct
val target = "Scala";
open Basic_Code_Symbol;
open Basic_Code_Thingol;
open Code_Printer;
infixr 5 @@;
infixr 5 @|;
(** Scala serializer **)
fun print_scala_stmt tyco_syntax const_syntax reserved
args_num is_constr (deresolve, deresolve_full) =
let
val deresolve_const = deresolve o Constant;
val deresolve_tyco = deresolve o Type_Constructor;
val deresolve_class = deresolve o Type_Class;
fun lookup_tyvar tyvars = lookup_var tyvars o first_upper;
fun intro_tyvars vs = intro_vars (map (first_upper o fst) vs);
fun print_tyco_expr tyvars fxy (sym, tys) = applify "[" "]"
(print_typ tyvars NOBR) fxy ((str o deresolve) sym) tys
and print_typ tyvars fxy (tyco `%% tys) = (case tyco_syntax tyco
of NONE => print_tyco_expr tyvars fxy (Type_Constructor tyco, tys)
| SOME (_, print) => print (print_typ tyvars) fxy tys)
| print_typ tyvars fxy (ITyVar v) = (str o lookup_tyvar tyvars) v;
fun print_dicttyp tyvars (class, ty) = print_tyco_expr tyvars NOBR (Type_Class class, [ty]);
fun print_tupled_typ tyvars ([], ty) =
print_typ tyvars NOBR ty
| print_tupled_typ tyvars ([ty1], ty2) =
concat [print_typ tyvars BR ty1, str "=>", print_typ tyvars NOBR ty2]
| print_tupled_typ tyvars (tys, ty) =
concat [enum "," "(" ")" (map (print_typ tyvars NOBR) tys),
str "=>", print_typ tyvars NOBR ty];
fun constraint p1 p2 = Pretty.block [p1, str ":", Pretty.brk 1, p2];
fun print_var vars NONE = str "_"
| print_var vars (SOME v) = (str o lookup_var vars) v
fun print_term tyvars is_pat some_thm vars fxy (IConst const) =
print_app tyvars is_pat some_thm vars fxy (const, [])
| print_term tyvars is_pat some_thm vars fxy (t as (t1 `$ t2)) =
(case Code_Thingol.unfold_const_app t
of SOME app => print_app tyvars is_pat some_thm vars fxy app
| _ => applify "(" ")" (print_term tyvars is_pat some_thm vars NOBR) fxy
(print_term tyvars is_pat some_thm vars BR t1) [t2])
| print_term tyvars is_pat some_thm vars fxy (IVar v) =
print_var vars v
| print_term tyvars is_pat some_thm vars fxy ((v, ty) `|=> t) =
let
val vars' = intro_vars (the_list v) vars;
in
concat [
enclose "(" ")" [constraint (print_var vars' v) (print_typ tyvars NOBR ty)],
str "=>",
print_term tyvars false some_thm vars' NOBR t
]
end
| print_term tyvars is_pat some_thm vars fxy (ICase case_expr) =
(case Code_Thingol.unfold_const_app (#primitive case_expr)
of SOME (app as ({ sym = Constant const, ... }, _)) =>
if is_none (const_syntax const)
then print_case tyvars some_thm vars fxy case_expr
else print_app tyvars is_pat some_thm vars fxy app
| NONE => print_case tyvars some_thm vars fxy case_expr)
and print_app tyvars is_pat some_thm vars fxy
(app as ({ sym, typargs, dom, ... }, ts)) =
let
val k = length ts;
val typargs' = if is_pat then [] else typargs;
val syntax = case sym of
Constant const => const_syntax const
| _ => NONE;
val (l, print') = case syntax of
NONE => (args_num sym, fn fxy => fn ts => gen_applify (is_constr sym) "(" ")"
(print_term tyvars is_pat some_thm vars NOBR) fxy
(applify "[" "]" (print_typ tyvars NOBR)
NOBR ((str o deresolve) sym) typargs') ts)
| SOME (k, Plain_printer s) => (k, fn fxy => fn ts => applify "(" ")"
(print_term tyvars is_pat some_thm vars NOBR) fxy
(applify "[" "]" (print_typ tyvars NOBR)
NOBR (str s) typargs') ts)
| SOME (k, Complex_printer print) =>
(k, fn fxy => fn ts => print (print_term tyvars is_pat some_thm) some_thm vars fxy
(ts ~~ take k dom))
in if k = l then print' fxy ts
else if k < l then
print_term tyvars is_pat some_thm vars fxy (Code_Thingol.eta_expand l app)
else let
val (ts1, ts23) = chop l ts;
in
Pretty.block (print' BR ts1 :: map (fn t => Pretty.block
[str ".apply(", print_term tyvars is_pat some_thm vars NOBR t, str ")"]) ts23)
end end
and print_bind tyvars some_thm fxy p =
gen_print_bind (print_term tyvars true) some_thm fxy p
and print_case tyvars some_thm vars fxy { clauses = [], ... } =
(brackify fxy o Pretty.breaks o map str) ["sys.error(\"empty case\")"]
| print_case tyvars some_thm vars fxy (case_expr as { clauses = [_], ... }) =
let
val (bind :: binds, body) = Code_Thingol.unfold_let (ICase case_expr);
fun print_match_val ((pat, ty), t) vars =
vars
|> print_bind tyvars some_thm BR pat
|>> (fn p => (false, concat [str "val", constraint p (print_typ tyvars NOBR ty),
str "=", print_term tyvars false some_thm vars NOBR t]));
fun print_match_seq t vars =
((true, print_term tyvars false some_thm vars NOBR t), vars);
fun print_match is_first ((IVar NONE, ty), t) =
if Code_Thingol.is_IAbs t andalso is_first
then print_match_val ((IVar NONE, ty), t)
else print_match_seq t
| print_match _ ((pat, ty), t) =
print_match_val ((pat, ty), t);
val (seps_ps, vars') =
vars |> print_match true bind ||>> fold_map (print_match false) binds |>> uncurry cons;
val all_seps_ps = seps_ps @ [(true, print_term tyvars false some_thm vars' NOBR body)];
fun insert_seps [(_, p)] = [p]
| insert_seps ((_, p) :: (seps_ps as (sep, _) :: _)) =
(if sep then Pretty.block [p, str ";"] else p) :: insert_seps seps_ps
in brackify_block fxy (str "{") (insert_seps all_seps_ps) (str "}") end
| print_case tyvars some_thm vars fxy { term = t, typ = ty, clauses = clauses as _ :: _, ... } =
let
fun print_select (pat, body) =
let
val (p_pat, vars') = print_bind tyvars some_thm NOBR pat vars;
val p_body = print_term tyvars false some_thm vars' NOBR body
in concat [str "case", p_pat, str "=>", p_body] end;
in
map print_select clauses
|> Pretty.block_enclose (concat [print_term tyvars false some_thm vars NOBR t, str "match", str "{"], str "}")
|> single
|> enclose "(" ")"
end;
fun print_context tyvars vs sym = applify "[" "]"
(fn (v, sort) => (Pretty.block o map str)
(lookup_tyvar tyvars v :: maps (fn class => [" : ", deresolve_class class]) sort))
NOBR ((str o deresolve) sym) vs;
fun print_defhead export tyvars vars const vs params tys ty =
concat [str "def", constraint (applify "(" ")" (fn (param, ty) =>
constraint ((str o lookup_var vars) param) (print_typ tyvars NOBR ty))
NOBR (print_context tyvars vs (Constant const)) (params ~~ tys)) (print_typ tyvars NOBR ty),
str "="];
fun print_def export const (vs, ty) [] =
let
val (tys, ty') = Code_Thingol.unfold_fun ty;
val params = Name.invent (snd reserved) "a" (length tys);
val tyvars = intro_tyvars vs reserved;
val vars = intro_vars params reserved;
in
concat [print_defhead export tyvars vars const vs params tys ty',
str ("sys.error(\"" ^ const ^ "\")")]
end
| print_def export const (vs, ty) eqs =
let
val tycos = fold (fn ((ts, t), _) =>
fold Code_Thingol.add_tyconames (t :: ts)) eqs [];
val tyvars = reserved
|> intro_base_names
(is_none o tyco_syntax) deresolve_tyco tycos
|> intro_tyvars vs;
val simple = case eqs
of [((ts, _), _)] => forall Code_Thingol.is_IVar ts
| _ => false;
val vars1 = reserved
|> intro_base_names_for (is_none o const_syntax)
deresolve (map (snd o fst) eqs);
val params = if simple
then (map (fn IVar (SOME x) => x) o fst o fst o hd) eqs
else aux_params vars1 (map (fst o fst) eqs);
val vars2 = intro_vars params vars1;
val (tys', ty') = Code_Thingol.unfold_fun_n (length params) ty;
fun tuplify [p] = p
| tuplify ps = enum "," "(" ")" ps;
fun print_rhs vars' ((_, t), (some_thm, _)) =
print_term tyvars false some_thm vars' NOBR t;
fun print_clause (eq as ((ts, _), (some_thm, _))) =
let
val vars' = intro_vars ((fold o Code_Thingol.fold_varnames)
(insert (op =)) ts []) vars1;
in
concat [str "case",
tuplify (map (print_term tyvars true some_thm vars' NOBR) ts),
str "=>", print_rhs vars' eq]
end;
val head = print_defhead export tyvars vars2 const vs params tys' ty';
in if simple then
concat [head, print_rhs vars2 (hd eqs)]
else
Pretty.block_enclose
(concat [head, tuplify (map (str o lookup_var vars2) params),
str "match", str "{"], str "}")
(map print_clause eqs)
end;
val print_method = str o Library.enclose "`" "`" o deresolve_full o Constant;
fun print_stmt (Constant const, (export, Code_Thingol.Fun (((vs, ty), raw_eqs), _))) =
print_def export const (vs, ty) (filter (snd o snd) raw_eqs)
| print_stmt (Type_Constructor tyco, (export, Code_Thingol.Datatype (vs, cos))) =
let
val tyvars = intro_tyvars (map (rpair []) vs) reserved;
fun print_co ((co, vs_args), tys) =
concat [Pretty.block ((applify "[" "]" (str o lookup_tyvar tyvars) NOBR
((concat o map str) ["final", "case", "class", deresolve_const co]) vs_args)
@@ enum "," "(" ")" (map (fn (v, arg) => constraint (str v) (print_typ tyvars NOBR arg))
(Name.invent_names (snd reserved) "a" tys))),
str "extends",
applify "[" "]" (str o lookup_tyvar tyvars) NOBR
((str o deresolve_tyco) tyco) vs
];
in
Pretty.chunks (applify "[" "]" (str o lookup_tyvar tyvars)
NOBR ((concat o map str) ["abstract", "sealed", "class", deresolve_tyco tyco]) vs
:: map print_co cos)
end
| print_stmt (Type_Class class, (export, Code_Thingol.Class (v, (classrels, classparams)))) =
let
val tyvars = intro_tyvars [(v, [class])] reserved;
fun add_typarg s = Pretty.block
[str s, str "[", (str o lookup_tyvar tyvars) v, str "]"];
fun print_super_classes [] = NONE
| print_super_classes classrels = SOME (concat (str "extends"
:: separate (str "with") (map (add_typarg o deresolve_class o snd) classrels)));
fun print_classparam_val (classparam, ty) =
concat [str "val", constraint (print_method classparam)
((print_tupled_typ tyvars o Code_Thingol.unfold_fun) ty)];
fun print_classparam_def (classparam, ty) =
let
val (tys, ty) = Code_Thingol.unfold_fun ty;
val [implicit_name] = Name.invent (snd reserved) (lookup_tyvar tyvars v) 1;
val proto_vars = intro_vars [implicit_name] reserved;
val auxs = Name.invent (snd proto_vars) "a" (length tys);
val vars = intro_vars auxs proto_vars;
in
concat [str "def", constraint (Pretty.block [applify "(" ")"
(fn (aux, ty) => constraint ((str o lookup_var vars) aux)
(print_typ tyvars NOBR ty)) NOBR (add_typarg (deresolve_const classparam))
(auxs ~~ tys), str "(implicit ", str implicit_name, str ": ",
add_typarg (deresolve_class class), str ")"]) (print_typ tyvars NOBR ty), str "=",
applify "(" ")" (str o lookup_var vars) NOBR
(Pretty.block [str implicit_name, str ".", print_method classparam]) auxs]
end;
in
Pretty.chunks (
(Pretty.block_enclose
(concat ([str "trait", (add_typarg o deresolve_class) class]
@ the_list (print_super_classes classrels) @ [str "{"]), str "}")
(map print_classparam_val classparams))
:: map print_classparam_def classparams
)
end
| print_stmt (sym, (export, Code_Thingol.Classinst
{ class, tyco, vs, inst_params, superinst_params, ... })) =
let
val tyvars = intro_tyvars vs reserved;
val classtyp = (class, tyco `%% map (ITyVar o fst) vs);
fun print_classparam_instance ((classparam, (const as { dom, ... }, dom_length)), (thm, _)) =
let
val aux_dom = Name.invent_names (snd reserved) "a" dom;
val auxs = map fst aux_dom;
val vars = intro_vars auxs reserved;
val (aux_dom1, aux_dom2) = chop dom_length aux_dom;
fun abstract_using [] = []
| abstract_using aux_dom = [enum "," "(" ")"
(map (fn (aux, ty) => constraint ((str o lookup_var vars) aux)
(print_typ tyvars NOBR ty)) aux_dom), str "=>"];
val aux_abstr1 = abstract_using aux_dom1;
val aux_abstr2 = abstract_using aux_dom2;
in
concat ([str "val", print_method classparam, str "="]
@ aux_abstr1 @ aux_abstr2 @| print_app tyvars false (SOME thm) vars NOBR
(const, map (IVar o SOME) auxs))
end;
in
Pretty.block_enclose (concat [str "implicit def",
constraint (print_context tyvars vs sym) (print_dicttyp tyvars classtyp),
str "=", str "new", print_dicttyp tyvars classtyp, str "{"], str "}")
(map print_classparam_instance (inst_params @ superinst_params))
end;
in print_stmt end;
fun scala_program_of_program ctxt module_name reserved identifiers exports program =
let
fun namify_module name_fragment ((nsp_class, nsp_object), nsp_common) =
let
val declare = Name.declare name_fragment;
in (name_fragment, ((declare nsp_class, declare nsp_object), declare nsp_common)) end;
fun namify_class base ((nsp_class, nsp_object), nsp_common) =
let
val (base', nsp_class') = Name.variant base nsp_class
in (base', ((nsp_class', nsp_object), Name.declare base' nsp_common)) end;
fun namify_object base ((nsp_class, nsp_object), nsp_common) =
let
val (base', nsp_object') = Name.variant base nsp_object
in (base', ((nsp_class, nsp_object'), Name.declare base' nsp_common)) end;
fun namify_common upper base ((nsp_class, nsp_object), nsp_common) =
let
val (base', nsp_common') =
Name.variant (if upper then first_upper base else base) nsp_common
in
(base',
((Name.declare base' nsp_class, Name.declare base' nsp_object), nsp_common'))
end;
fun namify_stmt (Code_Thingol.Fun _) = namify_object
| namify_stmt (Code_Thingol.Datatype _) = namify_class
| namify_stmt (Code_Thingol.Datatypecons _) = namify_common true
| namify_stmt (Code_Thingol.Class _) = namify_class
| namify_stmt (Code_Thingol.Classrel _) = namify_object
| namify_stmt (Code_Thingol.Classparam _) = namify_object
| namify_stmt (Code_Thingol.Classinst _) = namify_common false;
fun memorize_implicits sym =
let
fun is_classinst stmt = case stmt
of Code_Thingol.Classinst _ => true
| _ => false;
val implicits = filter (is_classinst o Code_Symbol.Graph.get_node program)
(Code_Symbol.Graph.immediate_succs program sym);
in union (op =) implicits end;
fun modify_stmt (_, (_, Code_Thingol.Fun (_, SOME _))) = NONE
| modify_stmt (_, (_, Code_Thingol.Datatypecons _)) = NONE
| modify_stmt (_, (_, Code_Thingol.Classrel _)) = NONE
| modify_stmt (_, (_, Code_Thingol.Classparam _)) = NONE
| modify_stmt (_, export_stmt) = SOME export_stmt;
in
Code_Namespace.hierarchical_program ctxt
{ module_name = module_name, reserved = reserved, identifiers = identifiers,
empty_nsp = ((reserved, reserved), reserved), namify_module = namify_module,
namify_stmt = namify_stmt, cyclic_modules = true,
class_transitive = true, class_relation_public = false, empty_data = [],
memorize_data = memorize_implicits, modify_stmts = map modify_stmt } exports program
end;
fun serialize_scala ctxt { module_name, reserved_syms, identifiers,
includes, class_syntax, tyco_syntax, const_syntax } exports program =
let
(* build program *)
val { deresolver, hierarchical_program = scala_program } =
scala_program_of_program ctxt module_name (Name.make_context reserved_syms)
identifiers exports program;
(* print statements *)
fun lookup_constr tyco constr = case Code_Symbol.Graph.get_node program (Type_Constructor tyco)
of Code_Thingol.Datatype (_, constrs) =>
the (AList.lookup (op = o apsnd fst) constrs constr);
fun classparams_of_class class = case Code_Symbol.Graph.get_node program (Type_Class class)
of Code_Thingol.Class (_, (_, classparams)) => classparams;
fun args_num (sym as Constant const) = case Code_Symbol.Graph.get_node program sym
of Code_Thingol.Fun (((_, ty), []), _) =>
(length o fst o Code_Thingol.unfold_fun) ty
| Code_Thingol.Fun ((_, ((ts, _), _) :: _), _) => length ts
| Code_Thingol.Datatypecons tyco => length (lookup_constr tyco const)
| Code_Thingol.Classparam class =>
(length o fst o Code_Thingol.unfold_fun o the o AList.lookup (op =)
(classparams_of_class class)) const;
fun print_stmt prefix_fragments = print_scala_stmt
tyco_syntax const_syntax (make_vars reserved_syms) args_num
(Code_Thingol.is_constr program) (deresolver prefix_fragments, deresolver []);
(* print modules *)
fun print_implicit prefix_fragments implicit =
let
val s = deresolver prefix_fragments implicit;
in if length (Long_Name.explode s) = 1 then NONE else SOME (str s) end;
fun print_module prefix_fragments base implicits ps = Pretty.chunks2
([str ("object " ^ base ^ " {")]
@ (case map_filter (print_implicit prefix_fragments) implicits
of [] => [] | implicit_ps => (single o Pretty.block)
(str "import /*implicits*/" :: Pretty.brk 1 :: commas implicit_ps))
@ ps @ [str ("} /* object " ^ base ^ " */")]);
(* serialization *)
val p = Pretty.chunks2 (map snd includes
@ Code_Namespace.print_hierarchical {
print_module = print_module, print_stmt = print_stmt,
lift_markup = I } scala_program);
fun write width NONE = writeln o format [] width
| write width (SOME p) = File.write p o format [] width;
fun prepare syms width p = ([("", format syms width p)], try (deresolver []));
in
Code_Target.serialization write prepare p
end;
val serializer : Code_Target.serializer =
Code_Target.parse_args (Scan.succeed ()) #> K serialize_scala;
val literals = let
fun char_scala c = if c = "'" then "\\'"
else if c = "\"" then "\\\""
else if c = "\\" then "\\\\"
else let val k = ord c
in if k < 32 orelse k > 126 then "\\" ^ radixstring (8, "0", k) else c end
fun numeral_scala k = if k < 0
then if k > ~ 2147483647 then "- " ^ string_of_int (~ k)
else quote ("-" ^ string_of_int (~ k))
else if k <= 2147483647 then string_of_int k
else quote (string_of_int k)
in Literals {
literal_char = Library.enclose "'" "'" o char_scala,
literal_string = quote o translate_string char_scala,
literal_numeral = fn k => "BigInt(" ^ numeral_scala k ^ ")",
literal_list = fn [] => str "Nil" | ps => Pretty.block [str "List", enum "," "(" ")" ps],
infix_cons = (6, "::")
} end;
(** Isar setup **)
val setup =
Code_Target.add_target
(target, { serializer = serializer, literals = literals,
check = { env_var = "SCALA_HOME",
make_destination = fn p => Path.append p (Path.explode "ROOT.scala"),
make_command = fn _ =>
"env JAVA_OPTS='-Xms128m -Xmx512m -Xss2m' \"$SCALA_HOME/bin/scalac\" ROOT.scala" } })
#> Code_Target.set_printings (Type_Constructor ("fun",
[(target, SOME (2, fn print_typ => fn fxy => fn [ty1, ty2] =>
brackify_infix (1, R) fxy (
print_typ BR ty1 (*product type vs. tupled arguments!*),
str "=>",
print_typ (INFX (1, R)) ty2
)))]))
#> fold (Code_Target.add_reserved target) [
"abstract", "case", "catch", "class", "def", "do", "else", "extends", "false",
"final", "finally", "for", "forSome", "if", "implicit", "import", "lazy",
"match", "new", "null", "object", "override", "package", "private", "protected",
"requires", "return", "sealed", "super", "this", "throw", "trait", "try",
"true", "type", "val", "var", "while", "with", "yield"
]
#> fold (Code_Target.add_reserved target) [
"apply", "sys", "scala", "BigInt", "Nil", "List"
];
end; (*struct*)