(* $Id$ *)
(*<*)
theory Classes
imports Main Code_Integer
begin
ML {*
CodeTarget.code_width := 74;
*}
syntax
"_alpha" :: "type" ("\<alpha>")
"_alpha_ofsort" :: "sort \<Rightarrow> type" ("\<alpha>()\<Colon>_" [0] 1000)
"_beta" :: "type" ("\<beta>")
"_beta_ofsort" :: "sort \<Rightarrow> type" ("\<beta>()\<Colon>_" [0] 1000)
parse_ast_translation {*
let
fun alpha_ast_tr [] = Syntax.Variable "'a"
| alpha_ast_tr asts = raise Syntax.AST ("alpha_ast_tr", asts);
fun alpha_ofsort_ast_tr [ast] =
Syntax.Appl [Syntax.Constant "_ofsort", Syntax.Variable "'a", ast]
| alpha_ofsort_ast_tr asts = raise Syntax.AST ("alpha_ast_tr", asts);
fun beta_ast_tr [] = Syntax.Variable "'b"
| beta_ast_tr asts = raise Syntax.AST ("beta_ast_tr", asts);
fun beta_ofsort_ast_tr [ast] =
Syntax.Appl [Syntax.Constant "_ofsort", Syntax.Variable "'b", ast]
| beta_ofsort_ast_tr asts = raise Syntax.AST ("beta_ast_tr", asts);
in [
("_alpha", alpha_ast_tr), ("_alpha_ofsort", alpha_ofsort_ast_tr),
("_beta", beta_ast_tr), ("_beta_ofsort", beta_ofsort_ast_tr)
] end
*}
(*>*)
chapter {* Haskell-style classes with Isabelle/Isar *}
section {* Introduction *}
text {*
Type classes were introduces by Wadler and Blott \cite{wadler89how}
into the Haskell language, to allow for a reasonable implementation
of overloading\footnote{throughout this tutorial, we are referring
to classical Haskell 1.0 type classes, not considering
later additions in expressiveness}.
As a canonical example, a polymorphic equality function
@{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} which is overloaded on different
types for @{text "\<alpha>"}, which is achieved by splitting introduction
of the @{text eq} function from its overloaded definitions by means
of @{text class} and @{text instance} declarations:
\medskip\noindent\hspace*{2ex}@{text "class eq where"}\footnote{syntax here is a kind of isabellized Haskell} \\
\hspace*{4ex}@{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"}
\medskip\noindent\hspace*{2ex}@{text "instance nat \<Colon> eq where"} \\
\hspace*{4ex}@{text "eq 0 0 = True"} \\
\hspace*{4ex}@{text "eq 0 _ = False"} \\
\hspace*{4ex}@{text "eq _ 0 = False"} \\
\hspace*{4ex}@{text "eq (Suc n) (Suc m) = eq n m"}
\medskip\noindent\hspace*{2ex}@{text "instance (\<alpha>\<Colon>eq, \<beta>\<Colon>eq) pair \<Colon> eq where"} \\
\hspace*{4ex}@{text "eq (x1, y1) (x2, y2) = eq x1 x2 \<and> eq y1 y2"}
\medskip\noindent\hspace*{2ex}@{text "class ord extends eq where"} \\
\hspace*{4ex}@{text "less_eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} \\
\hspace*{4ex}@{text "less \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"}
\medskip\noindent Type variables are annotated with (finitly many) classes;
these annotations are assertions that a particular polymorphic type
provides definitions for overloaded functions.
Indeed, type classes not only allow for simple overloading
but form a generic calculus, an instance of order-sorted
algebra \cite{Nipkow-Prehofer:1993,nipkow-sorts93,Wenzel:1997:TPHOL}.
From a software enigineering point of view, type classes
correspond to interfaces in object-oriented languages like Java;
so, it is naturally desirable that type classes do not only
provide functions (class parameters) but also state specifications
implementations must obey. For example, the @{text "class eq"}
above could be given the following specification, demanding that
@{text "class eq"} is an equivalence relation obeying reflexivity,
symmetry and transitivity:
\medskip\noindent\hspace*{2ex}@{text "class eq where"} \\
\hspace*{4ex}@{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} \\
\hspace*{2ex}@{text "satisfying"} \\
\hspace*{4ex}@{text "refl: eq x x"} \\
\hspace*{4ex}@{text "sym: eq x y \<longleftrightarrow> eq x y"} \\
\hspace*{4ex}@{text "trans: eq x y \<and> eq y z \<longrightarrow> eq x z"}
\medskip\noindent From a theoretic point of view, type classes are leightweight
modules; Haskell type classes may be emulated by
SML functors \cite{classes_modules}.
Isabelle/Isar offers a discipline of type classes which brings
all those aspects together:
\begin{enumerate}
\item specifying abstract parameters together with
corresponding specifications,
\item instantating those abstract parameters by a particular
type
\item in connection with a ``less ad-hoc'' approach to overloading,
\item with a direct link to the Isabelle module system
(aka locales \cite{kammueller-locales}).
\end{enumerate}
\noindent Isar type classes also directly support code generation
in a Haskell like fashion.
This tutorial demonstrates common elements of structured specifications
and abstract reasoning with type classes by the algebraic hierarchy of
semigroups, monoids and groups. Our background theory is that of
Isabelle/HOL \cite{isa-tutorial}, for which some
familiarity is assumed.
Here we merely present the look-and-feel for end users.
Internally, those are mapped to more primitive Isabelle concepts.
See \cite{Haftmann-Wenzel:2006:classes} for more detail.
*}
section {* A simple algebra example \label{sec:example} *}
subsection {* Class definition *}
text {*
Depending on an arbitrary type @{text "\<alpha>"}, class @{text
"semigroup"} introduces a binary operator @{text "\<otimes>"} that is
assumed to be associative:
*}
class semigroup = type +
fixes mult :: "\<alpha> \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" (infixl "\<otimes>" 70)
assumes assoc: "(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
text {*
\noindent This @{text "\<CLASS>"} specification consists of two
parts: the \qn{operational} part names the class parameter (@{text
"\<FIXES>"}), the \qn{logical} part specifies properties on them
(@{text "\<ASSUMES>"}). The local @{text "\<FIXES>"} and @{text
"\<ASSUMES>"} are lifted to the theory toplevel, yielding the global
parameter @{term [source] "mult \<Colon> \<alpha>\<Colon>semigroup \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>"} and the
global theorem @{text "semigroup.assoc:"}~@{prop [source] "\<And>x y
z \<Colon> \<alpha>\<Colon>semigroup. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"}.
*}
subsection {* Class instantiation \label{sec:class_inst} *}
text {*
The concrete type @{text "int"} is made a @{text "semigroup"}
instance by providing a suitable definition for the class parameter
@{text "mult"} and a proof for the specification of @{text "assoc"}.
This is accomplished by the @{text "\<INSTANTIATION>"} target:
*}
instantiation int :: semigroup
begin
definition
mult_int_def: "i \<otimes> j = i + (j\<Colon>int)"
instance proof
fix i j k :: int have "(i + j) + k = i + (j + k)" by simp
then show "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)"
unfolding mult_int_def .
qed
end
text {*
\noindent @{text "\<INSTANTIATION>"} allows to define class parameters
at a particular instance using common specification tools (here,
@{text "\<DEFINITION>"}). The concluding @{text "\<INSTANCE>"}
opens a proof that the given parameters actually conform
to the class specification. Note that the first proof step
is the @{text default} method,
which for such instance proofs maps to the @{text intro_classes} method.
This boils down an instance judgement to the relevant primitive
proof goals and should conveniently always be the first method applied
in an instantiation proof.
From now on, the type-checker will consider @{text "int"}
as a @{text "semigroup"} automatically, i.e.\ any general results
are immediately available on concrete instances.
\medskip Another instance of @{text "semigroup"} are the natural numbers:
*}
instantiation nat :: semigroup
begin
primrec mult_nat where
"(0\<Colon>nat) \<otimes> n = n"
| "Suc m \<otimes> n = Suc (m \<otimes> n)"
instance proof
fix m n q :: nat
show "m \<otimes> n \<otimes> q = m \<otimes> (n \<otimes> q)"
by (induct m) auto
qed
end
text {*
\noindent Note the occurence of the name @{text mult_nat}
in the primrec declaration; by default, the local name of
a class operation @{text f} to instantiate on type constructor
@{text \<kappa>} are mangled as @{text f_\<kappa>}. In case of uncertainty,
these names may be inspected using the @{text "\<PRINTCONTEXT>"} command
or the corresponding ProofGeneral button.
*}
subsection {* Lifting and parametric types *}
text {*
Overloaded definitions giving on class instantiation
may include recursion over the syntactic structure of types.
As a canonical example, we model product semigroups
using our simple algebra:
*}
instantiation * :: (semigroup, semigroup) semigroup
begin
definition
mult_prod_def: "p\<^isub>1 \<otimes> p\<^isub>2 = (fst p\<^isub>1 \<otimes> fst p\<^isub>2, snd p\<^isub>1 \<otimes> snd p\<^isub>2)"
instance proof
fix p\<^isub>1 p\<^isub>2 p\<^isub>3 :: "\<alpha>\<Colon>semigroup \<times> \<beta>\<Colon>semigroup"
show "p\<^isub>1 \<otimes> p\<^isub>2 \<otimes> p\<^isub>3 = p\<^isub>1 \<otimes> (p\<^isub>2 \<otimes> p\<^isub>3)"
unfolding mult_prod_def by (simp add: assoc)
qed
end
text {*
\noindent Associativity from product semigroups is
established using
the definition of @{text \<otimes>} on products and the hypothetical
associativety of the type components; these hypothesis
are facts due to the @{text semigroup} constraints imposed
on the type components by the @{text instance} proposition.
Indeed, this pattern often occurs with parametric types
and type classes.
*}
subsection {* Subclassing *}
text {*
We define a subclass @{text "monoidl"} (a semigroup with a left-hand neutral)
by extending @{text "semigroup"}
with one additional parameter @{text "neutral"} together
with its property:
*}
class monoidl = semigroup +
fixes neutral :: "\<alpha>" ("\<one>")
assumes neutl: "\<one> \<otimes> x = x"
text {*
\noindent Again, we prove some instances, by
providing suitable parameter definitions and proofs for the
additional specifications. Obverve that instantiations
for types with the same arity may be simultaneous:
*}
instantiation nat and int :: monoidl
begin
definition
neutral_nat_def: "\<one> = (0\<Colon>nat)"
definition
neutral_int_def: "\<one> = (0\<Colon>int)"
instance proof
fix n :: nat
show "\<one> \<otimes> n = n"
unfolding neutral_nat_def mult_nat_def by simp
next
fix k :: int
show "\<one> \<otimes> k = k"
unfolding neutral_int_def mult_int_def by simp
qed
end
instantiation * :: (monoidl, monoidl) monoidl
begin
definition
neutral_prod_def: "\<one> = (\<one>, \<one>)"
instance proof
fix p :: "\<alpha>\<Colon>monoidl \<times> \<beta>\<Colon>monoidl"
show "\<one> \<otimes> p = p"
unfolding neutral_prod_def mult_prod_def by (simp add: neutl)
qed
end
text {*
\noindent Fully-fledged monoids are modelled by another subclass
which does not add new parameters but tightens the specification:
*}
class monoid = monoidl +
assumes neutr: "x \<otimes> \<one> = x"
instantiation nat and int :: monoid
begin
instance proof
fix n :: nat
show "n \<otimes> \<one> = n"
unfolding neutral_nat_def by (induct n) simp_all
next
fix k :: int
show "k \<otimes> \<one> = k"
unfolding neutral_int_def mult_int_def by simp
qed
end
instantiation * :: (monoid, monoid) monoid
begin
instance proof
fix p :: "\<alpha>\<Colon>monoid \<times> \<beta>\<Colon>monoid"
show "p \<otimes> \<one> = p"
unfolding neutral_prod_def mult_prod_def by (simp add: neutr)
qed
end
text {*
\noindent To finish our small algebra example, we add a @{text "group"} class
with a corresponding instance:
*}
class group = monoidl +
fixes inverse :: "\<alpha> \<Rightarrow> \<alpha>" ("(_\<div>)" [1000] 999)
assumes invl: "x\<div> \<otimes> x = \<one>"
instantiation int :: group
begin
definition
inverse_int_def: "i\<div> = - (i\<Colon>int)"
instance proof
fix i :: int
have "-i + i = 0" by simp
then show "i\<div> \<otimes> i = \<one>"
unfolding mult_int_def neutral_int_def inverse_int_def .
qed
end
section {* Type classes as locales *}
subsection {* A look behind the scene *}
text {*
The example above gives an impression how Isar type classes work
in practice. As stated in the introduction, classes also provide
a link to Isar's locale system. Indeed, the logical core of a class
is nothing else than a locale:
*}
class idem = type +
fixes f :: "\<alpha> \<Rightarrow> \<alpha>"
assumes idem: "f (f x) = f x"
text {*
\noindent essentially introduces the locale
*}
(*<*) setup {* Sign.add_path "foo" *} (*>*)
locale idem =
fixes f :: "\<alpha> \<Rightarrow> \<alpha>"
assumes idem: "f (f x) = f x"
text {* \noindent together with corresponding constant(s): *}
consts f :: "\<alpha> \<Rightarrow> \<alpha>"
text {*
\noindent The connection to the type system is done by means
of a primitive axclass
*}
axclass idem < type
idem: "f (f x) = f x"
text {* \noindent together with a corresponding interpretation: *}
interpretation idem_class:
idem ["f \<Colon> (\<alpha>\<Colon>idem) \<Rightarrow> \<alpha>"]
by unfold_locales (rule idem)
(*<*) setup {* Sign.parent_path *} (*>*)
text {*
This give you at hand the full power of the Isabelle module system;
conclusions in locale @{text idem} are implicitly propagated
to class @{text idem}.
*}
subsection {* Abstract reasoning *}
text {*
Isabelle locales enable reasoning at a general level, while results
are implicitly transferred to all instances. For example, we can
now establish the @{text "left_cancel"} lemma for groups, which
states that the function @{text "(x \<otimes>)"} is injective:
*}
lemma (in group) left_cancel: "x \<otimes> y = x \<otimes> z \<longleftrightarrow> y = z"
proof
assume "x \<otimes> y = x \<otimes> z"
then have "x\<div> \<otimes> (x \<otimes> y) = x\<div> \<otimes> (x \<otimes> z)" by simp
then have "(x\<div> \<otimes> x) \<otimes> y = (x\<div> \<otimes> x) \<otimes> z" using assoc by simp
then show "y = z" using neutl and invl by simp
next
assume "y = z"
then show "x \<otimes> y = x \<otimes> z" by simp
qed
text {*
\noindent Here the \qt{@{text "\<IN> group"}} target specification
indicates that the result is recorded within that context for later
use. This local theorem is also lifted to the global one @{text
"group.left_cancel:"} @{prop [source] "\<And>x y z \<Colon> \<alpha>\<Colon>group. x \<otimes> y = x \<otimes>
z \<longleftrightarrow> y = z"}. Since type @{text "int"} has been made an instance of
@{text "group"} before, we may refer to that fact as well: @{prop
[source] "\<And>x y z \<Colon> int. x \<otimes> y = x \<otimes> z \<longleftrightarrow> y = z"}.
*}
subsection {* Derived definitions *}
text {*
Isabelle locales support a concept of local definitions
in locales:
*}
primrec (in monoid)
pow_nat :: "nat \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" where
"pow_nat 0 x = \<one>"
| "pow_nat (Suc n) x = x \<otimes> pow_nat n x"
text {*
\noindent If the locale @{text group} is also a class, this local
definition is propagated onto a global definition of
@{term [source] "pow_nat \<Colon> nat \<Rightarrow> \<alpha>\<Colon>monoid \<Rightarrow> \<alpha>\<Colon>monoid"}
with corresponding theorems
@{thm pow_nat.simps [no_vars]}.
\noindent As you can see from this example, for local
definitions you may use any specification tool
which works together with locales (e.g. \cite{krauss2006}).
*}
subsection {* A functor analogy *}
text {*
We introduced Isar classes by analogy to type classes
functional programming; if we reconsider this in the
context of what has been said about type classes and locales,
we can drive this analogy further by stating that type
classes essentially correspond to functors which have
a canonical interpretation as type classes.
Anyway, there is also the possibility of other interpretations.
For example, also @{text "list"}s form a monoid with
@{term "op @"} and @{term "[]"} as operations, but it
seems inappropriate to apply to lists
the same operations as for genuinly algebraic types.
In such a case, we simply can do a particular interpretation
of monoids for lists:
*}
interpretation list_monoid: monoid ["op @" "[]"]
by unfold_locales auto
text {*
\noindent This enables us to apply facts on monoids
to lists, e.g. @{thm list_monoid.neutl [no_vars]}.
When using this interpretation pattern, it may also
be appropriate to map derived definitions accordingly:
*}
fun
replicate :: "nat \<Rightarrow> \<alpha> list \<Rightarrow> \<alpha> list"
where
"replicate 0 _ = []"
| "replicate (Suc n) xs = xs @ replicate n xs"
interpretation list_monoid: monoid ["op @" "[]"] where
"monoid.pow_nat (op @) [] = replicate"
proof
fix n :: nat
show "monoid.pow_nat (op @) [] n = replicate n"
by (induct n) auto
qed
subsection {* Additional subclass relations *}
text {*
Any @{text "group"} is also a @{text "monoid"}; this
can be made explicit by claiming an additional
subclass relation,
together with a proof of the logical difference:
*}
subclass (in group) monoid
proof unfold_locales
fix x
from invl have "x\<div> \<otimes> x = \<one>" by simp
with assoc [symmetric] neutl invl have "x\<div> \<otimes> (x \<otimes> \<one>) = x\<div> \<otimes> x" by simp
with left_cancel show "x \<otimes> \<one> = x" by simp
qed
text {*
\noindent The logical proof is carried out on the locale level
and thus conveniently is opened using the @{text unfold_locales}
method which only leaves the logical differences still
open to proof to the user. Afterwards it is propagated
to the type system, making @{text group} an instance of
@{text monoid} by adding an additional edge
to the graph of subclass relations
(cf.\ \figref{fig:subclass}).
\begin{figure}[htbp]
\begin{center}
\small
\unitlength 0.6mm
\begin{picture}(40,60)(0,0)
\put(20,60){\makebox(0,0){@{text semigroup}}}
\put(20,40){\makebox(0,0){@{text monoidl}}}
\put(00,20){\makebox(0,0){@{text monoid}}}
\put(40,00){\makebox(0,0){@{text group}}}
\put(20,55){\vector(0,-1){10}}
\put(15,35){\vector(-1,-1){10}}
\put(25,35){\vector(1,-3){10}}
\end{picture}
\hspace{8em}
\begin{picture}(40,60)(0,0)
\put(20,60){\makebox(0,0){@{text semigroup}}}
\put(20,40){\makebox(0,0){@{text monoidl}}}
\put(00,20){\makebox(0,0){@{text monoid}}}
\put(40,00){\makebox(0,0){@{text group}}}
\put(20,55){\vector(0,-1){10}}
\put(15,35){\vector(-1,-1){10}}
\put(05,15){\vector(3,-1){30}}
\end{picture}
\caption{Subclass relationship of monoids and groups:
before and after establishing the relationship
@{text "group \<subseteq> monoid"}; transitive edges left out.}
\label{fig:subclass}
\end{center}
\end{figure}
For illustration, a derived definition
in @{text group} which uses @{text pow_nat}:
*}
definition (in group)
pow_int :: "int \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" where
"pow_int k x = (if k >= 0
then pow_nat (nat k) x
else (pow_nat (nat (- k)) x)\<div>)"
text {*
\noindent yields the global definition of
@{term [source] "pow_int \<Colon> int \<Rightarrow> \<alpha>\<Colon>group \<Rightarrow> \<alpha>\<Colon>group"}
with the corresponding theorem @{thm pow_int_def [no_vars]}.
*}
subsection {* A note on syntax *}
text {*
As a commodity, class context syntax allows to refer
to local class operations and their global conuterparts
uniformly; type inference resolves ambiguities. For example:
*}
context semigroup
begin
term "x \<otimes> y" -- {* example 1 *}
term "(x\<Colon>nat) \<otimes> y" -- {* example 2 *}
end
term "x \<otimes> y" -- {* example 3 *}
text {*
\noindent Here in example 1, the term refers to the local class operation
@{text "mult [\<alpha>]"}, whereas in example 2 the type constraint
enforces the global class operation @{text "mult [nat]"}.
In the global context in example 3, the reference is
to the polymorphic global class operation @{text "mult [?\<alpha> \<Colon> semigroup]"}.
*}
section {* Type classes and code generation *}
text {*
Turning back to the first motivation for type classes,
namely overloading, it is obvious that overloading
stemming from @{text "\<CLASS>"} statements and
@{text "\<INSTANTIATION>"}
targets naturally maps to Haskell type classes.
The code generator framework \cite{isabelle-codegen}
takes this into account. Concerning target languages
lacking type classes (e.g.~SML), type classes
are implemented by explicit dictionary construction.
For example, lets go back to the power function:
*}
definition
example :: int where
"example = pow_int 10 (-2)"
text {*
\noindent This maps to Haskell as:
*}
export_code example in Haskell module_name Classes file "code_examples/"
(* NOTE: you may use Haskell only once in this document, otherwise
you have to work in distinct subdirectories *)
text {*
\lsthaskell{Thy/code_examples/Classes.hs}
\noindent The whole code in SML with explicit dictionary passing:
*}
export_code example (*<*)in SML module_name Classes(*>*)in SML module_name Classes file "code_examples/classes.ML"
text {*
\lstsml{Thy/code_examples/classes.ML}
*}
(* subsection {* Different syntax for same specifications *}
text {*
subsection {* Syntactic classes *}
*} *)
end