(* Title: HOL/Analysis/Cartesian_Space.thy
Author: Amine Chaieb, University of Cambridge
Author: Jose Divasón <jose.divasonm at unirioja.es>
Author: Jesús Aransay <jesus-maria.aransay at unirioja.es>
Author: Johannes Hölzl, VU Amsterdam
Author: Fabian Immler, TUM
*)
section "Linear Algebra on Finite Cartesian Products"
theory Cartesian_Space
imports
Finite_Cartesian_Product Linear_Algebra
begin
subsection%unimportant \<open>Type @{typ \<open>'a ^ 'n\<close>} and fields as vector spaces\<close> (*much of the following
is really basic linear algebra, check for overlap? rename subsection? *)
definition "cart_basis = {axis i 1 | i. i\<in>UNIV}"
lemma finite_cart_basis: "finite (cart_basis)" unfolding cart_basis_def
using finite_Atleast_Atmost_nat by fastforce
lemma card_cart_basis: "card (cart_basis::('a::zero_neq_one^'i) set) = CARD('i)"
unfolding cart_basis_def Setcompr_eq_image
by (rule card_image) (auto simp: inj_on_def axis_eq_axis)
interpretation vec: vector_space "(*s) "
by unfold_locales (vector algebra_simps)+
lemma independent_cart_basis:
"vec.independent (cart_basis)"
proof (rule vec.independent_if_scalars_zero)
show "finite (cart_basis)" using finite_cart_basis .
fix f::"('a, 'b) vec \<Rightarrow> 'a" and x::"('a, 'b) vec"
assume eq_0: "(\<Sum>x\<in>cart_basis. f x *s x) = 0" and x_in: "x \<in> cart_basis"
obtain i where x: "x = axis i 1" using x_in unfolding cart_basis_def by auto
have sum_eq_0: "(\<Sum>x\<in>(cart_basis) - {x}. f x * (x $ i)) = 0"
proof (rule sum.neutral, rule ballI)
fix xa assume xa: "xa \<in> cart_basis - {x}"
obtain a where a: "xa = axis a 1" and a_not_i: "a \<noteq> i"
using xa x unfolding cart_basis_def by auto
have "xa $ i = 0" unfolding a axis_def using a_not_i by auto
thus "f xa * xa $ i = 0" by simp
qed
have "0 = (\<Sum>x\<in>cart_basis. f x *s x) $ i" using eq_0 by simp
also have "... = (\<Sum>x\<in>cart_basis. (f x *s x) $ i)" unfolding sum_component ..
also have "... = (\<Sum>x\<in>cart_basis. f x * (x $ i))" unfolding vector_smult_component ..
also have "... = f x * (x $ i) + (\<Sum>x\<in>(cart_basis) - {x}. f x * (x $ i))"
by (rule sum.remove[OF finite_cart_basis x_in])
also have "... = f x * (x $ i)" unfolding sum_eq_0 by simp
also have "... = f x" unfolding x axis_def by auto
finally show "f x = 0" ..
qed
lemma span_cart_basis:
"vec.span (cart_basis) = UNIV"
proof (auto)
fix x::"('a, 'b) vec"
let ?f="\<lambda>v. x $ (THE i. v = axis i 1)"
show "x \<in> vec.span (cart_basis)"
apply (unfold vec.span_finite[OF finite_cart_basis])
apply (rule image_eqI[of _ _ ?f])
apply (subst vec_eq_iff)
apply clarify
proof -
fix i::'b
let ?w = "axis i (1::'a)"
have the_eq_i: "(THE a. ?w = axis a 1) = i"
by (rule the_equality, auto simp: axis_eq_axis)
have sum_eq_0: "(\<Sum>v\<in>(cart_basis) - {?w}. x $ (THE i. v = axis i 1) * v $ i) = 0"
proof (rule sum.neutral, rule ballI)
fix xa::"('a, 'b) vec"
assume xa: "xa \<in> cart_basis - {?w}"
obtain j where j: "xa = axis j 1" and i_not_j: "i \<noteq> j" using xa unfolding cart_basis_def by auto
have the_eq_j: "(THE i. xa = axis i 1) = j"
proof (rule the_equality)
show "xa = axis j 1" using j .
show "\<And>i. xa = axis i 1 \<Longrightarrow> i = j" by (metis axis_eq_axis j zero_neq_one)
qed
show "x $ (THE i. xa = axis i 1) * xa $ i = 0"
apply (subst (2) j)
unfolding the_eq_j unfolding axis_def using i_not_j by simp
qed
have "(\<Sum>v\<in>cart_basis. x $ (THE i. v = axis i 1) *s v) $ i =
(\<Sum>v\<in>cart_basis. (x $ (THE i. v = axis i 1) *s v) $ i)" unfolding sum_component ..
also have "... = (\<Sum>v\<in>cart_basis. x $ (THE i. v = axis i 1) * v $ i)"
unfolding vector_smult_component ..
also have "... = x $ (THE a. ?w = axis a 1) * ?w $ i + (\<Sum>v\<in>(cart_basis) - {?w}. x $ (THE i. v = axis i 1) * v $ i)"
by (rule sum.remove[OF finite_cart_basis], auto simp add: cart_basis_def)
also have "... = x $ (THE a. ?w = axis a 1) * ?w $ i" unfolding sum_eq_0 by simp
also have "... = x $ i" unfolding the_eq_i unfolding axis_def by auto
finally show "x $ i = (\<Sum>v\<in>cart_basis. x $ (THE i. v = axis i 1) *s v) $ i" by simp
qed simp
qed
(*Some interpretations:*)
interpretation vec: finite_dimensional_vector_space "(*s)" "cart_basis"
by (unfold_locales, auto simp add: finite_cart_basis independent_cart_basis span_cart_basis)
lemma matrix_vector_mul_linear_gen[intro, simp]:
"Vector_Spaces.linear (*s) (*s) ((*v) A)"
by unfold_locales
(vector matrix_vector_mult_def sum.distrib algebra_simps)+
lemma span_vec_eq: "vec.span X = span X"
and dim_vec_eq: "vec.dim X = dim X"
and dependent_vec_eq: "vec.dependent X = dependent X"
and subspace_vec_eq: "vec.subspace X = subspace X"
for X::"(real^'n) set"
unfolding span_raw_def dim_raw_def dependent_raw_def subspace_raw_def
by (auto simp: scalar_mult_eq_scaleR)
lemma linear_componentwise:
fixes f:: "'a::field ^'m \<Rightarrow> 'a ^ 'n"
assumes lf: "Vector_Spaces.linear (*s) (*s) f"
shows "(f x)$j = sum (\<lambda>i. (x$i) * (f (axis i 1)$j)) (UNIV :: 'm set)" (is "?lhs = ?rhs")
proof -
interpret lf: Vector_Spaces.linear "(*s)" "(*s)" f
using lf .
let ?M = "(UNIV :: 'm set)"
let ?N = "(UNIV :: 'n set)"
have fM: "finite ?M" by simp
have "?rhs = (sum (\<lambda>i. (x$i) *s (f (axis i 1))) ?M)$j"
unfolding sum_component by simp
then show ?thesis
unfolding lf.sum[symmetric] lf.scale[symmetric]
unfolding basis_expansion by auto
qed
interpretation vec: Vector_Spaces.linear "(*s)" "(*s)" "(*v) A"
using matrix_vector_mul_linear_gen.
interpretation vec: finite_dimensional_vector_space_pair "(*s)" cart_basis "(*s)" cart_basis ..
lemma matrix_works:
assumes lf: "Vector_Spaces.linear (*s) (*s) f"
shows "matrix f *v x = f (x::'a::field ^ 'n)"
apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult.commute)
apply clarify
apply (rule linear_componentwise[OF lf, symmetric])
done
lemma matrix_of_matrix_vector_mul[simp]: "matrix(\<lambda>x. A *v (x :: 'a::field ^ 'n)) = A"
by (simp add: matrix_eq matrix_works)
lemma matrix_compose_gen:
assumes lf: "Vector_Spaces.linear (*s) (*s) (f::'a::{field}^'n \<Rightarrow> 'a^'m)"
and lg: "Vector_Spaces.linear (*s) (*s) (g::'a^'m \<Rightarrow> 'a^_)"
shows "matrix (g o f) = matrix g ** matrix f"
using lf lg Vector_Spaces.linear_compose[OF lf lg] matrix_works[OF Vector_Spaces.linear_compose[OF lf lg]]
by (simp add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def)
lemma matrix_compose:
assumes "linear (f::real^'n \<Rightarrow> real^'m)" "linear (g::real^'m \<Rightarrow> real^_)"
shows "matrix (g o f) = matrix g ** matrix f"
using matrix_compose_gen[of f g] assms
by (simp add: linear_def scalar_mult_eq_scaleR)
lemma left_invertible_transpose:
"(\<exists>(B). B ** transpose (A) = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). A ** B = mat 1)"
by (metis matrix_transpose_mul transpose_mat transpose_transpose)
lemma right_invertible_transpose:
"(\<exists>(B). transpose (A) ** B = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). B ** A = mat 1)"
by (metis matrix_transpose_mul transpose_mat transpose_transpose)
lemma linear_matrix_vector_mul_eq:
"Vector_Spaces.linear (*s) (*s) f \<longleftrightarrow> linear (f :: real^'n \<Rightarrow> real ^'m)"
by (simp add: scalar_mult_eq_scaleR linear_def)
lemma matrix_vector_mul[simp]:
"Vector_Spaces.linear (*s) (*s) g \<Longrightarrow> (\<lambda>y. matrix g *v y) = g"
"linear f \<Longrightarrow> (\<lambda>x. matrix f *v x) = f"
"bounded_linear f \<Longrightarrow> (\<lambda>x. matrix f *v x) = f"
for f :: "real^'n \<Rightarrow> real ^'m"
by (simp_all add: ext matrix_works linear_matrix_vector_mul_eq linear_linear)
lemma matrix_left_invertible_injective:
fixes A :: "'a::field^'n^'m"
shows "(\<exists>B. B ** A = mat 1) \<longleftrightarrow> inj ((*v) A)"
proof safe
fix B
assume B: "B ** A = mat 1"
show "inj ((*v) A)"
unfolding inj_on_def
by (metis B matrix_vector_mul_assoc matrix_vector_mul_lid)
next
assume "inj ((*v) A)"
from vec.linear_injective_left_inverse[OF matrix_vector_mul_linear_gen this]
obtain g where "Vector_Spaces.linear (*s) (*s) g" and g: "g \<circ> (*v) A = id"
by blast
have "matrix g ** A = mat 1"
by (metis matrix_vector_mul_linear_gen \<open>Vector_Spaces.linear (*s) (*s) g\<close> g matrix_compose_gen
matrix_eq matrix_id_mat_1 matrix_vector_mul(1))
then show "\<exists>B. B ** A = mat 1"
by metis
qed
lemma matrix_left_invertible_ker:
"(\<exists>B. (B::'a::{field} ^'m^'n) ** (A::'a::{field}^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x. A *v x = 0 \<longrightarrow> x = 0)"
unfolding matrix_left_invertible_injective
using vec.inj_on_iff_eq_0[OF vec.subspace_UNIV, of A]
by (simp add: inj_on_def)
lemma matrix_right_invertible_surjective:
"(\<exists>B. (A::'a::field^'n^'m) ** (B::'a::field^'m^'n) = mat 1) \<longleftrightarrow> surj (\<lambda>x. A *v x)"
proof -
{ fix B :: "'a ^'m^'n"
assume AB: "A ** B = mat 1"
{ fix x :: "'a ^ 'm"
have "A *v (B *v x) = x"
by (simp add: matrix_vector_mul_assoc AB) }
hence "surj ((*v) A)" unfolding surj_def by metis }
moreover
{ assume sf: "surj ((*v) A)"
from vec.linear_surjective_right_inverse[OF _ this]
obtain g:: "'a ^'m \<Rightarrow> 'a ^'n" where g: "Vector_Spaces.linear (*s) (*s) g" "(*v) A \<circ> g = id"
by blast
have "A ** (matrix g) = mat 1"
unfolding matrix_eq matrix_vector_mul_lid
matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
using g(2) unfolding o_def fun_eq_iff id_def
.
hence "\<exists>B. A ** (B::'a^'m^'n) = mat 1" by blast
}
ultimately show ?thesis unfolding surj_def by blast
qed
lemma matrix_left_invertible_independent_columns:
fixes A :: "'a::{field}^'n^'m"
shows "(\<exists>(B::'a ^'m^'n). B ** A = mat 1) \<longleftrightarrow>
(\<forall>c. sum (\<lambda>i. c i *s column i A) (UNIV :: 'n set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
(is "?lhs \<longleftrightarrow> ?rhs")
proof -
let ?U = "UNIV :: 'n set"
{ assume k: "\<forall>x. A *v x = 0 \<longrightarrow> x = 0"
{ fix c i
assume c: "sum (\<lambda>i. c i *s column i A) ?U = 0" and i: "i \<in> ?U"
let ?x = "\<chi> i. c i"
have th0:"A *v ?x = 0"
using c
by (vector matrix_mult_sum)
from k[rule_format, OF th0] i
have "c i = 0" by (vector vec_eq_iff)}
hence ?rhs by blast }
moreover
{ assume H: ?rhs
{ fix x assume x: "A *v x = 0"
let ?c = "\<lambda>i. ((x$i ):: 'a)"
from H[rule_format, of ?c, unfolded matrix_mult_sum[symmetric], OF x]
have "x = 0" by vector }
}
ultimately show ?thesis unfolding matrix_left_invertible_ker by auto
qed
lemma matrix_right_invertible_independent_rows:
fixes A :: "'a::{field}^'n^'m"
shows "(\<exists>(B::'a^'m^'n). A ** B = mat 1) \<longleftrightarrow>
(\<forall>c. sum (\<lambda>i. c i *s row i A) (UNIV :: 'm set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
unfolding left_invertible_transpose[symmetric]
matrix_left_invertible_independent_columns
by (simp add:)
lemma matrix_right_invertible_span_columns:
"(\<exists>(B::'a::field ^'n^'m). (A::'a ^'m^'n) ** B = mat 1) \<longleftrightarrow>
vec.span (columns A) = UNIV" (is "?lhs = ?rhs")
proof -
let ?U = "UNIV :: 'm set"
have fU: "finite ?U" by simp
have lhseq: "?lhs \<longleftrightarrow> (\<forall>y. \<exists>(x::'a^'m). sum (\<lambda>i. (x$i) *s column i A) ?U = y)"
unfolding matrix_right_invertible_surjective matrix_mult_sum surj_def
by (simp add: eq_commute)
have rhseq: "?rhs \<longleftrightarrow> (\<forall>x. x \<in> vec.span (columns A))" by blast
{ assume h: ?lhs
{ fix x:: "'a ^'n"
from h[unfolded lhseq, rule_format, of x] obtain y :: "'a ^'m"
where y: "sum (\<lambda>i. (y$i) *s column i A) ?U = x" by blast
have "x \<in> vec.span (columns A)"
unfolding y[symmetric] scalar_mult_eq_scaleR
proof (rule vec.span_sum [OF vec.span_scale])
show "column i A \<in> vec.span (columns A)" for i
using columns_def vec.span_superset by auto
qed
}
then have ?rhs unfolding rhseq by blast }
moreover
{ assume h:?rhs
let ?P = "\<lambda>(y::'a ^'n). \<exists>(x::'a^'m). sum (\<lambda>i. (x$i) *s column i A) ?U = y"
{ fix y
have "y \<in> vec.span (columns A)"
unfolding h by blast
then have "?P y"
proof (induction rule: vec.span_induct_alt)
case base
then show ?case
by (metis (full_types) matrix_mult_sum matrix_vector_mult_0_right)
next
case (step c y1 y2)
from step obtain i where i: "i \<in> ?U" "y1 = column i A"
unfolding columns_def by blast
obtain x:: "'a ^'m" where x: "sum (\<lambda>i. (x$i) *s column i A) ?U = y2"
using step by blast
let ?x = "(\<chi> j. if j = i then c + (x$i) else (x$j))::'a^'m"
show ?case
proof (rule exI[where x= "?x"], vector, auto simp add: i x[symmetric] if_distrib distrib_left if_distribR cong del: if_weak_cong)
fix j
have th: "\<forall>xa \<in> ?U. (if xa = i then (c + (x$i)) * ((column xa A)$j)
else (x$xa) * ((column xa A$j))) = (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))"
using i(1) by (simp add: field_simps)
have "sum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
else (x$xa) * ((column xa A$j))) ?U = sum (\<lambda>xa. (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))) ?U"
by (rule sum.cong[OF refl]) (use th in blast)
also have "\<dots> = sum (\<lambda>xa. if xa = i then c * ((column i A)$j) else 0) ?U + sum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
by (simp add: sum.distrib)
also have "\<dots> = c * ((column i A)$j) + sum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
unfolding sum.delta[OF fU]
using i(1) by simp
finally show "sum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
else (x$xa) * ((column xa A$j))) ?U = c * ((column i A)$j) + sum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" .
qed
qed
}
then have ?lhs unfolding lhseq ..
}
ultimately show ?thesis by blast
qed
lemma matrix_left_invertible_span_rows_gen:
"(\<exists>(B::'a^'m^'n). B ** (A::'a::field^'n^'m) = mat 1) \<longleftrightarrow> vec.span (rows A) = UNIV"
unfolding right_invertible_transpose[symmetric]
unfolding columns_transpose[symmetric]
unfolding matrix_right_invertible_span_columns
..
lemma matrix_left_invertible_span_rows:
"(\<exists>(B::real^'m^'n). B ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> span (rows A) = UNIV"
using matrix_left_invertible_span_rows_gen[of A] by (simp add: span_vec_eq)
lemma matrix_left_right_inverse:
fixes A A' :: "'a::{field}^'n^'n"
shows "A ** A' = mat 1 \<longleftrightarrow> A' ** A = mat 1"
proof -
{ fix A A' :: "'a ^'n^'n"
assume AA': "A ** A' = mat 1"
have sA: "surj ((*v) A)"
using AA' matrix_right_invertible_surjective by auto
from vec.linear_surjective_isomorphism[OF matrix_vector_mul_linear_gen sA]
obtain f' :: "'a ^'n \<Rightarrow> 'a ^'n"
where f': "Vector_Spaces.linear (*s) (*s) f'" "\<forall>x. f' (A *v x) = x" "\<forall>x. A *v f' x = x" by blast
have th: "matrix f' ** A = mat 1"
by (simp add: matrix_eq matrix_works[OF f'(1)]
matrix_vector_mul_assoc[symmetric] f'(2)[rule_format])
hence "(matrix f' ** A) ** A' = mat 1 ** A'" by simp
hence "matrix f' = A'"
by (simp add: matrix_mul_assoc[symmetric] AA')
hence "matrix f' ** A = A' ** A" by simp
hence "A' ** A = mat 1" by (simp add: th)
}
then show ?thesis by blast
qed
lemma invertible_left_inverse:
fixes A :: "'a::{field}^'n^'n"
shows "invertible A \<longleftrightarrow> (\<exists>(B::'a^'n^'n). B ** A = mat 1)"
by (metis invertible_def matrix_left_right_inverse)
lemma invertible_right_inverse:
fixes A :: "'a::{field}^'n^'n"
shows "invertible A \<longleftrightarrow> (\<exists>(B::'a^'n^'n). A** B = mat 1)"
by (metis invertible_def matrix_left_right_inverse)
lemma invertible_mult:
assumes inv_A: "invertible A"
and inv_B: "invertible B"
shows "invertible (A**B)"
proof -
obtain A' where AA': "A ** A' = mat 1" and A'A: "A' ** A = mat 1"
using inv_A unfolding invertible_def by blast
obtain B' where BB': "B ** B' = mat 1" and B'B: "B' ** B = mat 1"
using inv_B unfolding invertible_def by blast
show ?thesis
proof (unfold invertible_def, rule exI[of _ "B'**A'"], rule conjI)
have "A ** B ** (B' ** A') = A ** (B ** (B' ** A'))"
using matrix_mul_assoc[of A B "(B' ** A')", symmetric] .
also have "... = A ** (B ** B' ** A')" unfolding matrix_mul_assoc[of B "B'" "A'"] ..
also have "... = A ** (mat 1 ** A')" unfolding BB' ..
also have "... = A ** A'" unfolding matrix_mul_lid ..
also have "... = mat 1" unfolding AA' ..
finally show "A ** B ** (B' ** A') = mat (1::'a)" .
have "B' ** A' ** (A ** B) = B' ** (A' ** (A ** B))" using matrix_mul_assoc[of B' A' "(A ** B)", symmetric] .
also have "... = B' ** (A' ** A ** B)" unfolding matrix_mul_assoc[of A' A B] ..
also have "... = B' ** (mat 1 ** B)" unfolding A'A ..
also have "... = B' ** B" unfolding matrix_mul_lid ..
also have "... = mat 1" unfolding B'B ..
finally show "B' ** A' ** (A ** B) = mat 1" .
qed
qed
lemma transpose_invertible:
fixes A :: "real^'n^'n"
assumes "invertible A"
shows "invertible (transpose A)"
by (meson assms invertible_def matrix_left_right_inverse right_invertible_transpose)
lemma vector_matrix_mul_assoc:
fixes v :: "('a::comm_semiring_1)^'n"
shows "(v v* M) v* N = v v* (M ** N)"
proof -
from matrix_vector_mul_assoc
have "transpose N *v (transpose M *v v) = (transpose N ** transpose M) *v v" by fast
thus "(v v* M) v* N = v v* (M ** N)"
by (simp add: matrix_transpose_mul [symmetric])
qed
lemma matrix_scaleR_vector_ac:
fixes A :: "real^('m::finite)^'n"
shows "A *v (k *\<^sub>R v) = k *\<^sub>R A *v v"
by (metis matrix_vector_mult_scaleR transpose_scalar vector_scaleR_matrix_ac vector_transpose_matrix)
lemma scaleR_matrix_vector_assoc:
fixes A :: "real^('m::finite)^'n"
shows "k *\<^sub>R (A *v v) = k *\<^sub>R A *v v"
by (metis matrix_scaleR_vector_ac matrix_vector_mult_scaleR)
(*Finally, some interesting theorems and interpretations that don't appear in any file of the
library.*)
locale linear_first_finite_dimensional_vector_space =
l?: Vector_Spaces.linear scaleB scaleC f +
B?: finite_dimensional_vector_space scaleB BasisB
for scaleB :: "('a::field => 'b::ab_group_add => 'b)" (infixr "*b" 75)
and scaleC :: "('a => 'c::ab_group_add => 'c)" (infixr "*c" 75)
and BasisB :: "('b set)"
and f :: "('b=>'c)"
lemma vec_dim_card: "vec.dim (UNIV::('a::{field}^'n) set) = CARD ('n)"
proof -
let ?f="\<lambda>i::'n. axis i (1::'a)"
have "vec.dim (UNIV::('a::{field}^'n) set) = card (cart_basis::('a^'n) set)"
unfolding vec.dim_UNIV ..
also have "... = card ({i. i\<in> UNIV}::('n) set)"
proof (rule bij_betw_same_card[of ?f, symmetric], unfold bij_betw_def, auto)
show "inj (\<lambda>i::'n. axis i (1::'a))" by (simp add: inj_on_def axis_eq_axis)
fix i::'n
show "axis i 1 \<in> cart_basis" unfolding cart_basis_def by auto
fix x::"'a^'n"
assume "x \<in> cart_basis"
thus "x \<in> range (\<lambda>i. axis i 1)" unfolding cart_basis_def by auto
qed
also have "... = CARD('n)" by auto
finally show ?thesis .
qed
interpretation vector_space_over_itself: vector_space "(*) :: 'a::field \<Rightarrow> 'a \<Rightarrow> 'a"
by unfold_locales (simp_all add: algebra_simps)
lemmas [simp del] = vector_space_over_itself.scale_scale
interpretation vector_space_over_itself: finite_dimensional_vector_space
"(*) :: 'a::field => 'a => 'a" "{1}"
by unfold_locales (auto simp: vector_space_over_itself.span_singleton)
lemma dimension_eq_1[code_unfold]: "vector_space_over_itself.dimension TYPE('a::field)= 1"
unfolding vector_space_over_itself.dimension_def by simp
lemma dim_subset_UNIV_cart_gen:
fixes S :: "('a::field^'n) set"
shows "vec.dim S \<le> CARD('n)"
by (metis vec.dim_eq_full vec.dim_subset_UNIV vec.span_UNIV vec_dim_card)
lemma dim_subset_UNIV_cart:
fixes S :: "(real^'n) set"
shows "dim S \<le> CARD('n)"
using dim_subset_UNIV_cart_gen[of S] by (simp add: dim_vec_eq)
text\<open>Two sometimes fruitful ways of looking at matrix-vector multiplication.\<close>
lemma matrix_mult_dot: "A *v x = (\<chi> i. inner (A$i) x)"
by (simp add: matrix_vector_mult_def inner_vec_def)
lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
apply (rule adjoint_unique)
apply (simp add: transpose_def inner_vec_def matrix_vector_mult_def
sum_distrib_right sum_distrib_left)
apply (subst sum.swap)
apply (simp add: ac_simps)
done
lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
shows "matrix(adjoint f) = transpose(matrix f)"
proof -
have "matrix(adjoint f) = matrix(adjoint ((*v) (matrix f)))"
by (simp add: lf)
also have "\<dots> = transpose(matrix f)"
unfolding adjoint_matrix matrix_of_matrix_vector_mul
apply rule
done
finally show ?thesis .
qed
subsection\<open> Rank of a matrix\<close>
text\<open>Equivalence of row and column rank is taken from George Mackiw's paper, Mathematics Magazine 1995, p. 285.\<close>
lemma matrix_vector_mult_in_columnspace_gen:
fixes A :: "'a::field^'n^'m"
shows "(A *v x) \<in> vec.span(columns A)"
apply (simp add: matrix_vector_column columns_def transpose_def column_def)
apply (intro vec.span_sum vec.span_scale)
apply (force intro: vec.span_base)
done
lemma matrix_vector_mult_in_columnspace:
fixes A :: "real^'n^'m"
shows "(A *v x) \<in> span(columns A)"
using matrix_vector_mult_in_columnspace_gen[of A x] by (simp add: span_vec_eq)
lemma subspace_orthogonal_to_vector: "subspace {y. orthogonal x y}"
by (simp add: subspace_def orthogonal_clauses)
lemma orthogonal_nullspace_rowspace:
fixes A :: "real^'n^'m"
assumes 0: "A *v x = 0" and y: "y \<in> span(rows A)"
shows "orthogonal x y"
using y
proof (induction rule: span_induct)
case base
then show ?case
by (simp add: subspace_orthogonal_to_vector)
next
case (step v)
then obtain i where "v = row i A"
by (auto simp: rows_def)
with 0 show ?case
unfolding orthogonal_def inner_vec_def matrix_vector_mult_def row_def
by (simp add: mult.commute) (metis (no_types) vec_lambda_beta zero_index)
qed
lemma nullspace_inter_rowspace:
fixes A :: "real^'n^'m"
shows "A *v x = 0 \<and> x \<in> span(rows A) \<longleftrightarrow> x = 0"
using orthogonal_nullspace_rowspace orthogonal_self span_zero matrix_vector_mult_0_right
by blast
lemma matrix_vector_mul_injective_on_rowspace:
fixes A :: "real^'n^'m"
shows "\<lbrakk>A *v x = A *v y; x \<in> span(rows A); y \<in> span(rows A)\<rbrakk> \<Longrightarrow> x = y"
using nullspace_inter_rowspace [of A "x-y"]
by (metis diff_eq_diff_eq diff_self matrix_vector_mult_diff_distrib span_diff)
definition%important rank :: "'a::field^'n^'m=>nat"
where row_rank_def_gen: "rank A \<equiv> vec.dim(rows A)"
lemma row_rank_def: "rank A = dim (rows A)" for A::"real^'n^'m"
by (auto simp: row_rank_def_gen dim_vec_eq)
lemma dim_rows_le_dim_columns:
fixes A :: "real^'n^'m"
shows "dim(rows A) \<le> dim(columns A)"
proof -
have "dim (span (rows A)) \<le> dim (span (columns A))"
proof -
obtain B where "independent B" "span(rows A) \<subseteq> span B"
and B: "B \<subseteq> span(rows A)""card B = dim (span(rows A))"
using basis_exists [of "span(rows A)"] by metis
with span_subspace have eq: "span B = span(rows A)"
by auto
then have inj: "inj_on ((*v) A) (span B)"
by (simp add: inj_on_def matrix_vector_mul_injective_on_rowspace)
then have ind: "independent ((*v) A ` B)"
by (rule linear_independent_injective_image [OF Finite_Cartesian_Product.matrix_vector_mul_linear \<open>independent B\<close>])
have "dim (span (rows A)) \<le> card ((*v) A ` B)"
unfolding B(2)[symmetric]
using inj
by (auto simp: card_image inj_on_subset span_superset)
also have "\<dots> \<le> dim (span (columns A))"
using _ ind
by (rule independent_card_le_dim) (auto intro!: matrix_vector_mult_in_columnspace)
finally show ?thesis .
qed
then show ?thesis
by (simp add: dim_span)
qed
lemma column_rank_def:
fixes A :: "real^'n^'m"
shows "rank A = dim(columns A)"
unfolding row_rank_def
by (metis columns_transpose dim_rows_le_dim_columns le_antisym rows_transpose)
lemma rank_transpose:
fixes A :: "real^'n^'m"
shows "rank(transpose A) = rank A"
by (metis column_rank_def row_rank_def rows_transpose)
lemma matrix_vector_mult_basis:
fixes A :: "real^'n^'m"
shows "A *v (axis k 1) = column k A"
by (simp add: cart_eq_inner_axis column_def matrix_mult_dot)
lemma columns_image_basis:
fixes A :: "real^'n^'m"
shows "columns A = (*v) A ` (range (\<lambda>i. axis i 1))"
by (force simp: columns_def matrix_vector_mult_basis [symmetric])
lemma rank_dim_range:
fixes A :: "real^'n^'m"
shows "rank A = dim(range (\<lambda>x. A *v x))"
unfolding column_rank_def
proof (rule span_eq_dim)
have "span (columns A) \<subseteq> span (range ((*v) A))" (is "?l \<subseteq> ?r")
by (simp add: columns_image_basis image_subsetI span_mono)
then show "?l = ?r"
by (metis (no_types, lifting) image_subset_iff matrix_vector_mult_in_columnspace
span_eq span_span)
qed
lemma rank_bound:
fixes A :: "real^'n^'m"
shows "rank A \<le> min CARD('m) (CARD('n))"
by (metis (mono_tags, lifting) dim_subset_UNIV_cart min.bounded_iff
column_rank_def row_rank_def)
lemma full_rank_injective:
fixes A :: "real^'n^'m"
shows "rank A = CARD('n) \<longleftrightarrow> inj ((*v) A)"
by (simp add: matrix_left_invertible_injective [symmetric] matrix_left_invertible_span_rows row_rank_def
dim_eq_full [symmetric] card_cart_basis vec.dimension_def)
lemma full_rank_surjective:
fixes A :: "real^'n^'m"
shows "rank A = CARD('m) \<longleftrightarrow> surj ((*v) A)"
by (simp add: matrix_right_invertible_surjective [symmetric] left_invertible_transpose [symmetric]
matrix_left_invertible_injective full_rank_injective [symmetric] rank_transpose)
lemma rank_I: "rank(mat 1::real^'n^'n) = CARD('n)"
by (simp add: full_rank_injective inj_on_def)
lemma less_rank_noninjective:
fixes A :: "real^'n^'m"
shows "rank A < CARD('n) \<longleftrightarrow> \<not> inj ((*v) A)"
using less_le rank_bound by (auto simp: full_rank_injective [symmetric])
lemma matrix_nonfull_linear_equations_eq:
fixes A :: "real^'n^'m"
shows "(\<exists>x. (x \<noteq> 0) \<and> A *v x = 0) \<longleftrightarrow> rank A \<noteq> CARD('n)"
by (meson matrix_left_invertible_injective full_rank_injective matrix_left_invertible_ker)
lemma rank_eq_0: "rank A = 0 \<longleftrightarrow> A = 0" and rank_0 [simp]: "rank (0::real^'n^'m) = 0"
for A :: "real^'n^'m"
by (auto simp: rank_dim_range matrix_eq)
lemma rank_mul_le_right:
fixes A :: "real^'n^'m" and B :: "real^'p^'n"
shows "rank(A ** B) \<le> rank B"
proof -
have "rank(A ** B) \<le> dim ((*v) A ` range ((*v) B))"
by (auto simp: rank_dim_range image_comp o_def matrix_vector_mul_assoc)
also have "\<dots> \<le> rank B"
by (simp add: rank_dim_range dim_image_le)
finally show ?thesis .
qed
lemma rank_mul_le_left:
fixes A :: "real^'n^'m" and B :: "real^'p^'n"
shows "rank(A ** B) \<le> rank A"
by (metis matrix_transpose_mul rank_mul_le_right rank_transpose)
subsection%unimportant \<open>Lemmas for working on \<open>real^1/2/3\<close>\<close>
lemma exhaust_2:
fixes x :: 2
shows "x = 1 \<or> x = 2"
proof (induct x)
case (of_int z)
then have "0 \<le> z" and "z < 2" by simp_all
then have "z = 0 | z = 1" by arith
then show ?case by auto
qed
lemma forall_2: "(\<forall>i::2. P i) \<longleftrightarrow> P 1 \<and> P 2"
by (metis exhaust_2)
lemma exhaust_3:
fixes x :: 3
shows "x = 1 \<or> x = 2 \<or> x = 3"
proof (induct x)
case (of_int z)
then have "0 \<le> z" and "z < 3" by simp_all
then have "z = 0 \<or> z = 1 \<or> z = 2" by arith
then show ?case by auto
qed
lemma forall_3: "(\<forall>i::3. P i) \<longleftrightarrow> P 1 \<and> P 2 \<and> P 3"
by (metis exhaust_3)
lemma UNIV_1 [simp]: "UNIV = {1::1}"
by (auto simp add: num1_eq_iff)
lemma UNIV_2: "UNIV = {1::2, 2::2}"
using exhaust_2 by auto
lemma UNIV_3: "UNIV = {1::3, 2::3, 3::3}"
using exhaust_3 by auto
lemma sum_1: "sum f (UNIV::1 set) = f 1"
unfolding UNIV_1 by simp
lemma sum_2: "sum f (UNIV::2 set) = f 1 + f 2"
unfolding UNIV_2 by simp
lemma sum_3: "sum f (UNIV::3 set) = f 1 + f 2 + f 3"
unfolding UNIV_3 by (simp add: ac_simps)
subsection%unimportant\<open>The collapse of the general concepts to dimension one\<close>
lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
by (simp add: vec_eq_iff)
lemma forall_one: "(\<forall>(x::'a ^1). P x) \<longleftrightarrow> (\<forall>x. P(\<chi> i. x))"
apply auto
apply (erule_tac x= "x$1" in allE)
apply (simp only: vector_one[symmetric])
done
lemma norm_vector_1: "norm (x :: _^1) = norm (x$1)"
by (simp add: norm_vec_def)
lemma dist_vector_1:
fixes x :: "'a::real_normed_vector^1"
shows "dist x y = dist (x$1) (y$1)"
by (simp add: dist_norm norm_vector_1)
lemma norm_real: "norm(x::real ^ 1) = \<bar>x$1\<bar>"
by (simp add: norm_vector_1)
lemma dist_real: "dist(x::real ^ 1) y = \<bar>(x$1) - (y$1)\<bar>"
by (auto simp add: norm_real dist_norm)
subsection%unimportant\<open>Routine results connecting the types \<^typ>\<open>real^1\<close> and \<^typ>\<open>real\<close>\<close>
lemma vector_one_nth [simp]:
fixes x :: "'a^1" shows "vec (x $ 1) = x"
by (metis vec_def vector_one)
lemma tendsto_at_within_vector_1:
fixes S :: "'a :: metric_space set"
assumes "(f \<longlongrightarrow> fx) (at x within S)"
shows "((\<lambda>y::'a^1. \<chi> i. f (y $ 1)) \<longlongrightarrow> (vec fx::'a^1)) (at (vec x) within vec ` S)"
proof (rule topological_tendstoI)
fix T :: "('a^1) set"
assume "open T" "vec fx \<in> T"
have "\<forall>\<^sub>F x in at x within S. f x \<in> (\<lambda>x. x $ 1) ` T"
using \<open>open T\<close> \<open>vec fx \<in> T\<close> assms open_image_vec_nth tendsto_def by fastforce
then show "\<forall>\<^sub>F x::'a^1 in at (vec x) within vec ` S. (\<chi> i. f (x $ 1)) \<in> T"
unfolding eventually_at dist_norm [symmetric]
by (rule ex_forward)
(use \<open>open T\<close> in
\<open>fastforce simp: dist_norm dist_vec_def L2_set_def image_iff vector_one open_vec_def\<close>)
qed
lemma has_derivative_vector_1:
assumes der_g: "(g has_derivative (\<lambda>x. x * g' a)) (at a within S)"
shows "((\<lambda>x. vec (g (x $ 1))) has_derivative (*\<^sub>R) (g' a))
(at ((vec a)::real^1) within vec ` S)"
using der_g
apply (auto simp: Deriv.has_derivative_within bounded_linear_scaleR_right norm_vector_1)
apply (drule tendsto_at_within_vector_1, vector)
apply (auto simp: algebra_simps eventually_at tendsto_def)
done
subsection%unimportant\<open>Explicit vector construction from lists\<close>
definition "vector l = (\<chi> i. foldr (\<lambda>x f n. fun_upd (f (n+1)) n x) l (\<lambda>n x. 0) 1 i)"
lemma vector_1 [simp]: "(vector[x]) $1 = x"
unfolding vector_def by simp
lemma vector_2 [simp]: "(vector[x,y]) $1 = x" "(vector[x,y] :: 'a^2)$2 = (y::'a::zero)"
unfolding vector_def by simp_all
lemma vector_3 [simp]:
"(vector [x,y,z] ::('a::zero)^3)$1 = x"
"(vector [x,y,z] ::('a::zero)^3)$2 = y"
"(vector [x,y,z] ::('a::zero)^3)$3 = z"
unfolding vector_def by simp_all
lemma forall_vector_1: "(\<forall>v::'a::zero^1. P v) \<longleftrightarrow> (\<forall>x. P(vector[x]))"
by (metis vector_1 vector_one)
lemma forall_vector_2: "(\<forall>v::'a::zero^2. P v) \<longleftrightarrow> (\<forall>x y. P(vector[x, y]))"
apply auto
apply (erule_tac x="v$1" in allE)
apply (erule_tac x="v$2" in allE)
apply (subgoal_tac "vector [v$1, v$2] = v")
apply simp
apply (vector vector_def)
apply (simp add: forall_2)
done
lemma forall_vector_3: "(\<forall>v::'a::zero^3. P v) \<longleftrightarrow> (\<forall>x y z. P(vector[x, y, z]))"
apply auto
apply (erule_tac x="v$1" in allE)
apply (erule_tac x="v$2" in allE)
apply (erule_tac x="v$3" in allE)
apply (subgoal_tac "vector [v$1, v$2, v$3] = v")
apply simp
apply (vector vector_def)
apply (simp add: forall_3)
done
subsection%unimportant \<open>lambda skolemization on cartesian products\<close>
lemma lambda_skolem: "(\<forall>i. \<exists>x. P i x) \<longleftrightarrow>
(\<exists>x::'a ^ 'n. \<forall>i. P i (x $ i))" (is "?lhs \<longleftrightarrow> ?rhs")
proof -
let ?S = "(UNIV :: 'n set)"
{ assume H: "?rhs"
then have ?lhs by auto }
moreover
{ assume H: "?lhs"
then obtain f where f:"\<forall>i. P i (f i)" unfolding choice_iff by metis
let ?x = "(\<chi> i. (f i)) :: 'a ^ 'n"
{ fix i
from f have "P i (f i)" by metis
then have "P i (?x $ i)" by auto
}
hence "\<forall>i. P i (?x$i)" by metis
hence ?rhs by metis }
ultimately show ?thesis by metis
qed
text \<open>The same result in terms of square matrices.\<close>
text \<open>Considering an n-element vector as an n-by-1 or 1-by-n matrix.\<close>
definition "rowvector v = (\<chi> i j. (v$j))"
definition "columnvector v = (\<chi> i j. (v$i))"
lemma transpose_columnvector: "transpose(columnvector v) = rowvector v"
by (simp add: transpose_def rowvector_def columnvector_def vec_eq_iff)
lemma transpose_rowvector: "transpose(rowvector v) = columnvector v"
by (simp add: transpose_def columnvector_def rowvector_def vec_eq_iff)
lemma dot_rowvector_columnvector: "columnvector (A *v v) = A ** columnvector v"
by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
lemma dot_matrix_product:
"(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1"
by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vec_def)
lemma dot_matrix_vector_mul:
fixes A B :: "real ^'n ^'n" and x y :: "real ^'n"
shows "(A *v x) \<bullet> (B *v y) =
(((rowvector x :: real^'n^1) ** ((transpose A ** B) ** (columnvector y :: real ^1^'n)))$1)$1"
unfolding dot_matrix_product transpose_columnvector[symmetric]
dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc ..
lemma dim_substandard_cart: "vec.dim {x::'a::field^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0} = card d"
(is "vec.dim ?A = _")
proof (rule vec.dim_unique)
let ?B = "((\<lambda>x. axis x 1) ` d)"
have subset_basis: "?B \<subseteq> cart_basis"
by (auto simp: cart_basis_def)
show "?B \<subseteq> ?A"
by (auto simp: axis_def)
show "vec.independent ((\<lambda>x. axis x 1) ` d)"
using subset_basis
by (rule vec.independent_mono[OF vec.independent_Basis])
have "x \<in> vec.span ?B" if "\<forall>i. i \<notin> d \<longrightarrow> x $ i = 0" for x::"'a^'n"
proof -
have "finite ?B"
using subset_basis finite_cart_basis
by (rule finite_subset)
have "x = (\<Sum>i\<in>UNIV. x $ i *s axis i 1)"
by (rule basis_expansion[symmetric])
also have "\<dots> = (\<Sum>i\<in>d. (x $ i) *s axis i 1)"
by (rule sum.mono_neutral_cong_right) (auto simp: that)
also have "\<dots> \<in> vec.span ?B"
by (simp add: vec.span_sum vec.span_clauses)
finally show "x \<in> vec.span ?B" .
qed
then show "?A \<subseteq> vec.span ?B" by auto
qed (simp add: card_image inj_on_def axis_eq_axis)
lemma affinity_inverses:
assumes m0: "m \<noteq> (0::'a::field)"
shows "(\<lambda>x. m *s x + c) \<circ> (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
"(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) \<circ> (\<lambda>x. m *s x + c) = id"
using m0
by (auto simp add: fun_eq_iff vector_add_ldistrib diff_conv_add_uminus simp del: add_uminus_conv_diff)
lemma vector_affinity_eq:
assumes m0: "(m::'a::field) \<noteq> 0"
shows "m *s x + c = y \<longleftrightarrow> x = inverse m *s y + -(inverse m *s c)"
proof
assume h: "m *s x + c = y"
hence "m *s x = y - c" by (simp add: field_simps)
hence "inverse m *s (m *s x) = inverse m *s (y - c)" by simp
then show "x = inverse m *s y + - (inverse m *s c)"
using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
next
assume h: "x = inverse m *s y + - (inverse m *s c)"
show "m *s x + c = y" unfolding h
using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
qed
lemma vector_eq_affinity:
"(m::'a::field) \<noteq> 0 ==> (y = m *s x + c \<longleftrightarrow> inverse(m) *s y + -(inverse(m) *s c) = x)"
using vector_affinity_eq[where m=m and x=x and y=y and c=c]
by metis
lemma vector_cart:
fixes f :: "real^'n \<Rightarrow> real"
shows "(\<chi> i. f (axis i 1)) = (\<Sum>i\<in>Basis. f i *\<^sub>R i)"
unfolding euclidean_eq_iff[where 'a="real^'n"]
by simp (simp add: Basis_vec_def inner_axis)
lemma const_vector_cart:"((\<chi> i. d)::real^'n) = (\<Sum>i\<in>Basis. d *\<^sub>R i)"
by (rule vector_cart)
subsection%unimportant \<open>Explicit formulas for low dimensions\<close>
lemma prod_neutral_const: "prod f {(1::nat)..1} = f 1"
by simp
lemma prod_2: "prod f {(1::nat)..2} = f 1 * f 2"
by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute)
lemma prod_3: "prod f {(1::nat)..3} = f 1 * f 2 * f 3"
by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute)
subsection \<open>Orthogonality of a matrix\<close>
definition%important "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow>
transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1"
lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1"
by (metis matrix_left_right_inverse orthogonal_matrix_def)
lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1 :: _^'n^'n)"
by (simp add: orthogonal_matrix_def)
proposition orthogonal_matrix_mul:
fixes A :: "real ^'n^'n"
assumes "orthogonal_matrix A" "orthogonal_matrix B"
shows "orthogonal_matrix(A ** B)"
using assms
by (simp add: orthogonal_matrix matrix_transpose_mul matrix_left_right_inverse matrix_mul_assoc)
proposition orthogonal_transformation_matrix:
fixes f:: "real^'n \<Rightarrow> real^'n"
shows "orthogonal_transformation f \<longleftrightarrow> linear f \<and> orthogonal_matrix(matrix f)"
(is "?lhs \<longleftrightarrow> ?rhs")
proof -
let ?mf = "matrix f"
let ?ot = "orthogonal_transformation f"
let ?U = "UNIV :: 'n set"
have fU: "finite ?U" by simp
let ?m1 = "mat 1 :: real ^'n^'n"
{
assume ot: ?ot
from ot have lf: "Vector_Spaces.linear (*s) (*s) f" and fd: "\<And>v w. f v \<bullet> f w = v \<bullet> w"
unfolding orthogonal_transformation_def orthogonal_matrix linear_def scalar_mult_eq_scaleR
by blast+
{
fix i j
let ?A = "transpose ?mf ** ?mf"
have th0: "\<And>b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)"
"\<And>b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)"
by simp_all
from fd[of "axis i 1" "axis j 1",
simplified matrix_works[OF lf, symmetric] dot_matrix_vector_mul]
have "?A$i$j = ?m1 $ i $ j"
by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvector_def
th0 sum.delta[OF fU] mat_def axis_def)
}
then have "orthogonal_matrix ?mf"
unfolding orthogonal_matrix
by vector
with lf have ?rhs
unfolding linear_def scalar_mult_eq_scaleR
by blast
}
moreover
{
assume lf: "Vector_Spaces.linear (*s) (*s) f" and om: "orthogonal_matrix ?mf"
from lf om have ?lhs
unfolding orthogonal_matrix_def norm_eq orthogonal_transformation
apply (simp only: matrix_works[OF lf, symmetric] dot_matrix_vector_mul)
apply (simp add: dot_matrix_product linear_def scalar_mult_eq_scaleR)
done
}
ultimately show ?thesis
by (auto simp: linear_def scalar_mult_eq_scaleR)
qed
subsection \<open> We can find an orthogonal matrix taking any unit vector to any other\<close>
lemma orthogonal_matrix_transpose [simp]:
"orthogonal_matrix(transpose A) \<longleftrightarrow> orthogonal_matrix A"
by (auto simp: orthogonal_matrix_def)
lemma orthogonal_matrix_orthonormal_columns:
fixes A :: "real^'n^'n"
shows "orthogonal_matrix A \<longleftrightarrow>
(\<forall>i. norm(column i A) = 1) \<and>
(\<forall>i j. i \<noteq> j \<longrightarrow> orthogonal (column i A) (column j A))"
by (auto simp: orthogonal_matrix matrix_mult_transpose_dot_column vec_eq_iff mat_def norm_eq_1 orthogonal_def)
lemma orthogonal_matrix_orthonormal_rows:
fixes A :: "real^'n^'n"
shows "orthogonal_matrix A \<longleftrightarrow>
(\<forall>i. norm(row i A) = 1) \<and>
(\<forall>i j. i \<noteq> j \<longrightarrow> orthogonal (row i A) (row j A))"
using orthogonal_matrix_orthonormal_columns [of "transpose A"] by simp
proposition orthogonal_matrix_exists_basis:
fixes a :: "real^'n"
assumes "norm a = 1"
obtains A where "orthogonal_matrix A" "A *v (axis k 1) = a"
proof -
obtain S where "a \<in> S" "pairwise orthogonal S" and noS: "\<And>x. x \<in> S \<Longrightarrow> norm x = 1"
and "independent S" "card S = CARD('n)" "span S = UNIV"
using vector_in_orthonormal_basis assms by force
then obtain f0 where "bij_betw f0 (UNIV::'n set) S"
by (metis finite_class.finite_UNIV finite_same_card_bij finiteI_independent)
then obtain f where f: "bij_betw f (UNIV::'n set) S" and a: "a = f k"
using bij_swap_iff [of k "inv f0 a" f0]
by (metis UNIV_I \<open>a \<in> S\<close> bij_betw_inv_into_right bij_betw_swap_iff swap_apply(1))
show thesis
proof
have [simp]: "\<And>i. norm (f i) = 1"
using bij_betwE [OF \<open>bij_betw f UNIV S\<close>] by (blast intro: noS)
have [simp]: "\<And>i j. i \<noteq> j \<Longrightarrow> orthogonal (f i) (f j)"
using \<open>pairwise orthogonal S\<close> \<open>bij_betw f UNIV S\<close>
by (auto simp: pairwise_def bij_betw_def inj_on_def)
show "orthogonal_matrix (\<chi> i j. f j $ i)"
by (simp add: orthogonal_matrix_orthonormal_columns column_def)
show "(\<chi> i j. f j $ i) *v axis k 1 = a"
by (simp add: matrix_vector_mult_def axis_def a if_distrib cong: if_cong)
qed
qed
lemma orthogonal_transformation_exists_1:
fixes a b :: "real^'n"
assumes "norm a = 1" "norm b = 1"
obtains f where "orthogonal_transformation f" "f a = b"
proof -
obtain k::'n where True
by simp
obtain A B where AB: "orthogonal_matrix A" "orthogonal_matrix B" and eq: "A *v (axis k 1) = a" "B *v (axis k 1) = b"
using orthogonal_matrix_exists_basis assms by metis
let ?f = "\<lambda>x. (B ** transpose A) *v x"
show thesis
proof
show "orthogonal_transformation ?f"
by (subst orthogonal_transformation_matrix)
(auto simp: AB orthogonal_matrix_mul)
next
show "?f a = b"
using \<open>orthogonal_matrix A\<close> unfolding orthogonal_matrix_def
by (metis eq matrix_mul_rid matrix_vector_mul_assoc)
qed
qed
proposition orthogonal_transformation_exists:
fixes a b :: "real^'n"
assumes "norm a = norm b"
obtains f where "orthogonal_transformation f" "f a = b"
proof (cases "a = 0 \<or> b = 0")
case True
with assms show ?thesis
using that by force
next
case False
then obtain f where f: "orthogonal_transformation f" and eq: "f (a /\<^sub>R norm a) = (b /\<^sub>R norm b)"
by (auto intro: orthogonal_transformation_exists_1 [of "a /\<^sub>R norm a" "b /\<^sub>R norm b"])
show ?thesis
proof
interpret linear f
using f by (simp add: orthogonal_transformation_linear)
have "f a /\<^sub>R norm a = f (a /\<^sub>R norm a)"
by (simp add: scale)
also have "\<dots> = b /\<^sub>R norm a"
by (simp add: eq assms [symmetric])
finally show "f a = b"
using False by auto
qed (use f in auto)
qed
subsection \<open>Linearity of scaling, and hence isometry, that preserves origin\<close>
lemma scaling_linear:
fixes f :: "'a::real_inner \<Rightarrow> 'a::real_inner"
assumes f0: "f 0 = 0"
and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y"
shows "linear f"
proof -
{
fix v w
have "norm (f x) = c * norm x" for x
by (metis dist_0_norm f0 fd)
then have "f v \<bullet> f w = c\<^sup>2 * (v \<bullet> w)"
unfolding dot_norm_neg dist_norm[symmetric]
by (simp add: fd power2_eq_square field_simps)
}
then show ?thesis
unfolding linear_iff vector_eq[where 'a="'a"] scalar_mult_eq_scaleR
by (simp add: inner_add field_simps)
qed
lemma isometry_linear:
"f (0::'a::real_inner) = (0::'a) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y \<Longrightarrow> linear f"
by (rule scaling_linear[where c=1]) simp_all
text \<open>Hence another formulation of orthogonal transformation\<close>
proposition orthogonal_transformation_isometry:
"orthogonal_transformation f \<longleftrightarrow> f(0::'a::real_inner) = (0::'a) \<and> (\<forall>x y. dist(f x) (f y) = dist x y)"
unfolding orthogonal_transformation
apply (auto simp: linear_0 isometry_linear)
apply (metis (no_types, hide_lams) dist_norm linear_diff)
by (metis dist_0_norm)
subsection \<open>Can extend an isometry from unit sphere\<close>
lemma isometry_sphere_extend:
fixes f:: "'a::real_inner \<Rightarrow> 'a"
assumes f1: "\<And>x. norm x = 1 \<Longrightarrow> norm (f x) = 1"
and fd1: "\<And>x y. \<lbrakk>norm x = 1; norm y = 1\<rbrakk> \<Longrightarrow> dist (f x) (f y) = dist x y"
shows "\<exists>g. orthogonal_transformation g \<and> (\<forall>x. norm x = 1 \<longrightarrow> g x = f x)"
proof -
{
fix x y x' y' u v u' v' :: "'a"
assume H: "x = norm x *\<^sub>R u" "y = norm y *\<^sub>R v"
"x' = norm x *\<^sub>R u'" "y' = norm y *\<^sub>R v'"
and J: "norm u = 1" "norm u' = 1" "norm v = 1" "norm v' = 1" "norm(u' - v') = norm(u - v)"
then have *: "u \<bullet> v = u' \<bullet> v' + v' \<bullet> u' - v \<bullet> u "
by (simp add: norm_eq norm_eq_1 inner_add inner_diff)
have "norm (norm x *\<^sub>R u' - norm y *\<^sub>R v') = norm (norm x *\<^sub>R u - norm y *\<^sub>R v)"
using J by (simp add: norm_eq norm_eq_1 inner_diff * field_simps)
then have "norm(x' - y') = norm(x - y)"
using H by metis
}
note norm_eq = this
let ?g = "\<lambda>x. if x = 0 then 0 else norm x *\<^sub>R f (x /\<^sub>R norm x)"
have thfg: "?g x = f x" if "norm x = 1" for x
using that by auto
have thd: "dist (?g x) (?g y) = dist x y" for x y
proof (cases "x=0 \<or> y=0")
case False
show "dist (?g x) (?g y) = dist x y"
unfolding dist_norm
proof (rule norm_eq)
show "x = norm x *\<^sub>R (x /\<^sub>R norm x)" "y = norm y *\<^sub>R (y /\<^sub>R norm y)"
"norm (f (x /\<^sub>R norm x)) = 1" "norm (f (y /\<^sub>R norm y)) = 1"
using False f1 by auto
qed (use False in \<open>auto simp: field_simps intro: f1 fd1[unfolded dist_norm]\<close>)
qed (auto simp: f1)
show ?thesis
unfolding orthogonal_transformation_isometry
by (rule exI[where x= ?g]) (metis thfg thd)
qed
subsection\<open>Induction on matrix row operations\<close>
lemma induct_matrix_row_operations:
fixes P :: "real^'n^'n \<Rightarrow> bool"
assumes zero_row: "\<And>A i. row i A = 0 \<Longrightarrow> P A"
and diagonal: "\<And>A. (\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0) \<Longrightarrow> P A"
and swap_cols: "\<And>A m n. \<lbrakk>P A; m \<noteq> n\<rbrakk> \<Longrightarrow> P(\<chi> i j. A $ i $ Fun.swap m n id j)"
and row_op: "\<And>A m n c. \<lbrakk>P A; m \<noteq> n\<rbrakk>
\<Longrightarrow> P(\<chi> i. if i = m then row m A + c *\<^sub>R row n A else row i A)"
shows "P A"
proof -
have "P A" if "(\<And>i j. \<lbrakk>j \<in> -K; i \<noteq> j\<rbrakk> \<Longrightarrow> A$i$j = 0)" for A K
proof -
have "finite K"
by simp
then show ?thesis using that
proof (induction arbitrary: A rule: finite_induct)
case empty
with diagonal show ?case
by simp
next
case (insert k K)
note insertK = insert
have "P A" if kk: "A$k$k \<noteq> 0"
and 0: "\<And>i j. \<lbrakk>j \<in> - insert k K; i \<noteq> j\<rbrakk> \<Longrightarrow> A$i$j = 0"
"\<And>i. \<lbrakk>i \<in> -L; i \<noteq> k\<rbrakk> \<Longrightarrow> A$i$k = 0" for A L
proof -
have "finite L"
by simp
then show ?thesis using 0 kk
proof (induction arbitrary: A rule: finite_induct)
case (empty B)
show ?case
proof (rule insertK)
fix i j
assume "i \<in> - K" "j \<noteq> i"
show "B $ j $ i = 0"
using \<open>j \<noteq> i\<close> \<open>i \<in> - K\<close> empty
by (metis ComplD ComplI Compl_eq_Diff_UNIV Diff_empty UNIV_I insert_iff)
qed
next
case (insert l L B)
show ?case
proof (cases "k = l")
case True
with insert show ?thesis
by auto
next
case False
let ?C = "\<chi> i. if i = l then row l B - (B $ l $ k / B $ k $ k) *\<^sub>R row k B else row i B"
have 1: "\<lbrakk>j \<in> - insert k K; i \<noteq> j\<rbrakk> \<Longrightarrow> ?C $ i $ j = 0" for j i
by (auto simp: insert.prems(1) row_def)
have 2: "?C $ i $ k = 0"
if "i \<in> - L" "i \<noteq> k" for i
proof (cases "i=l")
case True
with that insert.prems show ?thesis
by (simp add: row_def)
next
case False
with that show ?thesis
by (simp add: insert.prems(2) row_def)
qed
have 3: "?C $ k $ k \<noteq> 0"
by (auto simp: insert.prems row_def \<open>k \<noteq> l\<close>)
have PC: "P ?C"
using insert.IH [OF 1 2 3] by auto
have eqB: "(\<chi> i. if i = l then row l ?C + (B $ l $ k / B $ k $ k) *\<^sub>R row k ?C else row i ?C) = B"
using \<open>k \<noteq> l\<close> by (simp add: vec_eq_iff row_def)
show ?thesis
using row_op [OF PC, of l k, where c = "B$l$k / B$k$k"] eqB \<open>k \<noteq> l\<close>
by (simp add: cong: if_cong)
qed
qed
qed
then have nonzero_hyp: "P A"
if kk: "A$k$k \<noteq> 0" and zeroes: "\<And>i j. j \<in> - insert k K \<and> i\<noteq>j \<Longrightarrow> A$i$j = 0" for A
by (auto simp: intro!: kk zeroes)
show ?case
proof (cases "row k A = 0")
case True
with zero_row show ?thesis by auto
next
case False
then obtain l where l: "A$k$l \<noteq> 0"
by (auto simp: row_def zero_vec_def vec_eq_iff)
show ?thesis
proof (cases "k = l")
case True
with l nonzero_hyp insert.prems show ?thesis
by blast
next
case False
have *: "A $ i $ Fun.swap k l id j = 0" if "j \<noteq> k" "j \<notin> K" "i \<noteq> j" for i j
using False l insert.prems that
by (auto simp: swap_def insert split: if_split_asm)
have "P (\<chi> i j. (\<chi> i j. A $ i $ Fun.swap k l id j) $ i $ Fun.swap k l id j)"
by (rule swap_cols [OF nonzero_hyp False]) (auto simp: l *)
moreover
have "(\<chi> i j. (\<chi> i j. A $ i $ Fun.swap k l id j) $ i $ Fun.swap k l id j) = A"
by (vector Fun.swap_def)
ultimately show ?thesis
by simp
qed
qed
qed
qed
then show ?thesis
by blast
qed
lemma induct_matrix_elementary:
fixes P :: "real^'n^'n \<Rightarrow> bool"
assumes mult: "\<And>A B. \<lbrakk>P A; P B\<rbrakk> \<Longrightarrow> P(A ** B)"
and zero_row: "\<And>A i. row i A = 0 \<Longrightarrow> P A"
and diagonal: "\<And>A. (\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0) \<Longrightarrow> P A"
and swap1: "\<And>m n. m \<noteq> n \<Longrightarrow> P(\<chi> i j. mat 1 $ i $ Fun.swap m n id j)"
and idplus: "\<And>m n c. m \<noteq> n \<Longrightarrow> P(\<chi> i j. if i = m \<and> j = n then c else of_bool (i = j))"
shows "P A"
proof -
have swap: "P (\<chi> i j. A $ i $ Fun.swap m n id j)" (is "P ?C")
if "P A" "m \<noteq> n" for A m n
proof -
have "A ** (\<chi> i j. mat 1 $ i $ Fun.swap m n id j) = ?C"
by (simp add: matrix_matrix_mult_def mat_def vec_eq_iff if_distrib sum.delta_remove)
then show ?thesis
using mult swap1 that by metis
qed
have row: "P (\<chi> i. if i = m then row m A + c *\<^sub>R row n A else row i A)" (is "P ?C")
if "P A" "m \<noteq> n" for A m n c
proof -
let ?B = "\<chi> i j. if i = m \<and> j = n then c else of_bool (i = j)"
have "?B ** A = ?C"
using \<open>m \<noteq> n\<close> unfolding matrix_matrix_mult_def row_def of_bool_def
by (auto simp: vec_eq_iff if_distrib [of "\<lambda>x. x * y" for y] sum.remove cong: if_cong)
then show ?thesis
by (rule subst) (auto simp: that mult idplus)
qed
show ?thesis
by (rule induct_matrix_row_operations [OF zero_row diagonal swap row])
qed
lemma induct_matrix_elementary_alt:
fixes P :: "real^'n^'n \<Rightarrow> bool"
assumes mult: "\<And>A B. \<lbrakk>P A; P B\<rbrakk> \<Longrightarrow> P(A ** B)"
and zero_row: "\<And>A i. row i A = 0 \<Longrightarrow> P A"
and diagonal: "\<And>A. (\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0) \<Longrightarrow> P A"
and swap1: "\<And>m n. m \<noteq> n \<Longrightarrow> P(\<chi> i j. mat 1 $ i $ Fun.swap m n id j)"
and idplus: "\<And>m n. m \<noteq> n \<Longrightarrow> P(\<chi> i j. of_bool (i = m \<and> j = n \<or> i = j))"
shows "P A"
proof -
have *: "P (\<chi> i j. if i = m \<and> j = n then c else of_bool (i = j))"
if "m \<noteq> n" for m n c
proof (cases "c = 0")
case True
with diagonal show ?thesis by auto
next
case False
then have eq: "(\<chi> i j. if i = m \<and> j = n then c else of_bool (i = j)) =
(\<chi> i j. if i = j then (if j = n then inverse c else 1) else 0) **
(\<chi> i j. of_bool (i = m \<and> j = n \<or> i = j)) **
(\<chi> i j. if i = j then if j = n then c else 1 else 0)"
using \<open>m \<noteq> n\<close>
apply (simp add: matrix_matrix_mult_def vec_eq_iff of_bool_def if_distrib [of "\<lambda>x. y * x" for y] cong: if_cong)
apply (simp add: if_if_eq_conj sum.neutral conj_commute cong: conj_cong)
done
show ?thesis
apply (subst eq)
apply (intro mult idplus that)
apply (auto intro: diagonal)
done
qed
show ?thesis
by (rule induct_matrix_elementary) (auto intro: assms *)
qed
lemma matrix_vector_mult_matrix_matrix_mult_compose:
"(*v) (A ** B) = (*v) A \<circ> (*v) B"
by (auto simp: matrix_vector_mul_assoc)
lemma induct_linear_elementary:
fixes f :: "real^'n \<Rightarrow> real^'n"
assumes "linear f"
and comp: "\<And>f g. \<lbrakk>linear f; linear g; P f; P g\<rbrakk> \<Longrightarrow> P(f \<circ> g)"
and zeroes: "\<And>f i. \<lbrakk>linear f; \<And>x. (f x) $ i = 0\<rbrakk> \<Longrightarrow> P f"
and const: "\<And>c. P(\<lambda>x. \<chi> i. c i * x$i)"
and swap: "\<And>m n::'n. m \<noteq> n \<Longrightarrow> P(\<lambda>x. \<chi> i. x $ Fun.swap m n id i)"
and idplus: "\<And>m n::'n. m \<noteq> n \<Longrightarrow> P(\<lambda>x. \<chi> i. if i = m then x$m + x$n else x$i)"
shows "P f"
proof -
have "P ((*v) A)" for A
proof (rule induct_matrix_elementary_alt)
fix A B
assume "P ((*v) A)" and "P ((*v) B)"
then show "P ((*v) (A ** B))"
by (auto simp add: matrix_vector_mult_matrix_matrix_mult_compose matrix_vector_mul_linear
intro!: comp)
next
fix A :: "real^'n^'n" and i
assume "row i A = 0"
show "P ((*v) A)"
using matrix_vector_mul_linear
by (rule zeroes[where i=i])
(metis \<open>row i A = 0\<close> inner_zero_left matrix_vector_mul_component row_def vec_lambda_eta)
next
fix A :: "real^'n^'n"
assume 0: "\<And>i j. i \<noteq> j \<Longrightarrow> A $ i $ j = 0"
have "A $ i $ i * x $ i = (\<Sum>j\<in>UNIV. A $ i $ j * x $ j)" for x and i :: "'n"
by (simp add: 0 comm_monoid_add_class.sum.remove [where x=i])
then have "(\<lambda>x. \<chi> i. A $ i $ i * x $ i) = ((*v) A)"
by (auto simp: 0 matrix_vector_mult_def)
then show "P ((*v) A)"
using const [of "\<lambda>i. A $ i $ i"] by simp
next
fix m n :: "'n"
assume "m \<noteq> n"
have eq: "(\<Sum>j\<in>UNIV. if i = Fun.swap m n id j then x $ j else 0) =
(\<Sum>j\<in>UNIV. if j = Fun.swap m n id i then x $ j else 0)"
for i and x :: "real^'n"
unfolding swap_def by (rule sum.cong) auto
have "(\<lambda>x::real^'n. \<chi> i. x $ Fun.swap m n id i) = ((*v) (\<chi> i j. if i = Fun.swap m n id j then 1 else 0))"
by (auto simp: mat_def matrix_vector_mult_def eq if_distrib [of "\<lambda>x. x * y" for y] cong: if_cong)
with swap [OF \<open>m \<noteq> n\<close>] show "P ((*v) (\<chi> i j. mat 1 $ i $ Fun.swap m n id j))"
by (simp add: mat_def matrix_vector_mult_def)
next
fix m n :: "'n"
assume "m \<noteq> n"
then have "x $ m + x $ n = (\<Sum>j\<in>UNIV. of_bool (j = n \<or> m = j) * x $ j)" for x :: "real^'n"
by (auto simp: of_bool_def if_distrib [of "\<lambda>x. x * y" for y] sum.remove cong: if_cong)
then have "(\<lambda>x::real^'n. \<chi> i. if i = m then x $ m + x $ n else x $ i) =
((*v) (\<chi> i j. of_bool (i = m \<and> j = n \<or> i = j)))"
unfolding matrix_vector_mult_def of_bool_def
by (auto simp: vec_eq_iff if_distrib [of "\<lambda>x. x * y" for y] cong: if_cong)
then show "P ((*v) (\<chi> i j. of_bool (i = m \<and> j = n \<or> i = j)))"
using idplus [OF \<open>m \<noteq> n\<close>] by simp
qed
then show ?thesis
by (metis \<open>linear f\<close> matrix_vector_mul)
qed
end