(* Author: L C Paulson, University of Cambridge
Material split off from Topology_Euclidean_Space
*)
section \<open>Connected Components\<close>
theory Connected
imports
Abstract_Topology_2
begin
subsection%unimportant \<open>Connectedness\<close>
lemma connected_local:
"connected S \<longleftrightarrow>
\<not> (\<exists>e1 e2.
openin (subtopology euclidean S) e1 \<and>
openin (subtopology euclidean S) e2 \<and>
S \<subseteq> e1 \<union> e2 \<and>
e1 \<inter> e2 = {} \<and>
e1 \<noteq> {} \<and>
e2 \<noteq> {})"
unfolding connected_def openin_open
by safe blast+
lemma exists_diff:
fixes P :: "'a set \<Rightarrow> bool"
shows "(\<exists>S. P (- S)) \<longleftrightarrow> (\<exists>S. P S)"
(is "?lhs \<longleftrightarrow> ?rhs")
proof -
have ?rhs if ?lhs
using that by blast
moreover have "P (- (- S))" if "P S" for S
proof -
have "S = - (- S)" by simp
with that show ?thesis by metis
qed
ultimately show ?thesis by metis
qed
lemma connected_clopen: "connected S \<longleftrightarrow>
(\<forall>T. openin (subtopology euclidean S) T \<and>
closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
proof -
have "\<not> connected S \<longleftrightarrow>
(\<exists>e1 e2. open e1 \<and> open (- e2) \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
unfolding connected_def openin_open closedin_closed
by (metis double_complement)
then have th0: "connected S \<longleftrightarrow>
\<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
(is " _ \<longleftrightarrow> \<not> (\<exists>e2 e1. ?P e2 e1)")
by (simp add: closed_def) metis
have th1: "?rhs \<longleftrightarrow> \<not> (\<exists>t' t. closed t'\<and>t = S\<inter>t' \<and> t\<noteq>{} \<and> t\<noteq>S \<and> (\<exists>t'. open t' \<and> t = S \<inter> t'))"
(is "_ \<longleftrightarrow> \<not> (\<exists>t' t. ?Q t' t)")
unfolding connected_def openin_open closedin_closed by auto
have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" for e2
proof -
have "?P e2 e1 \<longleftrightarrow> (\<exists>t. closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t \<noteq> S)" for e1
by auto
then show ?thesis
by metis
qed
then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)"
by blast
then show ?thesis
by (simp add: th0 th1)
qed
subsection \<open>Connected components, considered as a connectedness relation or a set\<close>
definition%important "connected_component s x y \<equiv> \<exists>t. connected t \<and> t \<subseteq> s \<and> x \<in> t \<and> y \<in> t"
abbreviation "connected_component_set s x \<equiv> Collect (connected_component s x)"
lemma connected_componentI:
"connected t \<Longrightarrow> t \<subseteq> s \<Longrightarrow> x \<in> t \<Longrightarrow> y \<in> t \<Longrightarrow> connected_component s x y"
by (auto simp: connected_component_def)
lemma connected_component_in: "connected_component s x y \<Longrightarrow> x \<in> s \<and> y \<in> s"
by (auto simp: connected_component_def)
lemma connected_component_refl: "x \<in> s \<Longrightarrow> connected_component s x x"
by (auto simp: connected_component_def) (use connected_sing in blast)
lemma connected_component_refl_eq [simp]: "connected_component s x x \<longleftrightarrow> x \<in> s"
by (auto simp: connected_component_refl) (auto simp: connected_component_def)
lemma connected_component_sym: "connected_component s x y \<Longrightarrow> connected_component s y x"
by (auto simp: connected_component_def)
lemma connected_component_trans:
"connected_component s x y \<Longrightarrow> connected_component s y z \<Longrightarrow> connected_component s x z"
unfolding connected_component_def
by (metis Int_iff Un_iff Un_subset_iff equals0D connected_Un)
lemma connected_component_of_subset:
"connected_component s x y \<Longrightarrow> s \<subseteq> t \<Longrightarrow> connected_component t x y"
by (auto simp: connected_component_def)
lemma connected_component_Union: "connected_component_set s x = \<Union>{t. connected t \<and> x \<in> t \<and> t \<subseteq> s}"
by (auto simp: connected_component_def)
lemma connected_connected_component [iff]: "connected (connected_component_set s x)"
by (auto simp: connected_component_Union intro: connected_Union)
lemma connected_iff_eq_connected_component_set:
"connected s \<longleftrightarrow> (\<forall>x \<in> s. connected_component_set s x = s)"
proof (cases "s = {}")
case True
then show ?thesis by simp
next
case False
then obtain x where "x \<in> s" by auto
show ?thesis
proof
assume "connected s"
then show "\<forall>x \<in> s. connected_component_set s x = s"
by (force simp: connected_component_def)
next
assume "\<forall>x \<in> s. connected_component_set s x = s"
then show "connected s"
by (metis \<open>x \<in> s\<close> connected_connected_component)
qed
qed
lemma connected_component_subset: "connected_component_set s x \<subseteq> s"
using connected_component_in by blast
lemma connected_component_eq_self: "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> connected_component_set s x = s"
by (simp add: connected_iff_eq_connected_component_set)
lemma connected_iff_connected_component:
"connected s \<longleftrightarrow> (\<forall>x \<in> s. \<forall>y \<in> s. connected_component s x y)"
using connected_component_in by (auto simp: connected_iff_eq_connected_component_set)
lemma connected_component_maximal:
"x \<in> t \<Longrightarrow> connected t \<Longrightarrow> t \<subseteq> s \<Longrightarrow> t \<subseteq> (connected_component_set s x)"
using connected_component_eq_self connected_component_of_subset by blast
lemma connected_component_mono:
"s \<subseteq> t \<Longrightarrow> connected_component_set s x \<subseteq> connected_component_set t x"
by (simp add: Collect_mono connected_component_of_subset)
lemma connected_component_eq_empty [simp]: "connected_component_set s x = {} \<longleftrightarrow> x \<notin> s"
using connected_component_refl by (fastforce simp: connected_component_in)
lemma connected_component_set_empty [simp]: "connected_component_set {} x = {}"
using connected_component_eq_empty by blast
lemma connected_component_eq:
"y \<in> connected_component_set s x \<Longrightarrow> (connected_component_set s y = connected_component_set s x)"
by (metis (no_types, lifting)
Collect_cong connected_component_sym connected_component_trans mem_Collect_eq)
lemma closed_connected_component:
assumes s: "closed s"
shows "closed (connected_component_set s x)"
proof (cases "x \<in> s")
case False
then show ?thesis
by (metis connected_component_eq_empty closed_empty)
next
case True
show ?thesis
unfolding closure_eq [symmetric]
proof
show "closure (connected_component_set s x) \<subseteq> connected_component_set s x"
apply (rule connected_component_maximal)
apply (simp add: closure_def True)
apply (simp add: connected_imp_connected_closure)
apply (simp add: s closure_minimal connected_component_subset)
done
next
show "connected_component_set s x \<subseteq> closure (connected_component_set s x)"
by (simp add: closure_subset)
qed
qed
lemma connected_component_disjoint:
"connected_component_set s a \<inter> connected_component_set s b = {} \<longleftrightarrow>
a \<notin> connected_component_set s b"
apply (auto simp: connected_component_eq)
using connected_component_eq connected_component_sym
apply blast
done
lemma connected_component_nonoverlap:
"connected_component_set s a \<inter> connected_component_set s b = {} \<longleftrightarrow>
a \<notin> s \<or> b \<notin> s \<or> connected_component_set s a \<noteq> connected_component_set s b"
apply (auto simp: connected_component_in)
using connected_component_refl_eq
apply blast
apply (metis connected_component_eq mem_Collect_eq)
apply (metis connected_component_eq mem_Collect_eq)
done
lemma connected_component_overlap:
"connected_component_set s a \<inter> connected_component_set s b \<noteq> {} \<longleftrightarrow>
a \<in> s \<and> b \<in> s \<and> connected_component_set s a = connected_component_set s b"
by (auto simp: connected_component_nonoverlap)
lemma connected_component_sym_eq: "connected_component s x y \<longleftrightarrow> connected_component s y x"
using connected_component_sym by blast
lemma connected_component_eq_eq:
"connected_component_set s x = connected_component_set s y \<longleftrightarrow>
x \<notin> s \<and> y \<notin> s \<or> x \<in> s \<and> y \<in> s \<and> connected_component s x y"
apply (cases "y \<in> s", simp)
apply (metis connected_component_eq connected_component_eq_empty connected_component_refl_eq mem_Collect_eq)
apply (cases "x \<in> s", simp)
apply (metis connected_component_eq_empty)
using connected_component_eq_empty
apply blast
done
lemma connected_iff_connected_component_eq:
"connected s \<longleftrightarrow> (\<forall>x \<in> s. \<forall>y \<in> s. connected_component_set s x = connected_component_set s y)"
by (simp add: connected_component_eq_eq connected_iff_connected_component)
lemma connected_component_idemp:
"connected_component_set (connected_component_set s x) x = connected_component_set s x"
apply (rule subset_antisym)
apply (simp add: connected_component_subset)
apply (metis connected_component_eq_empty connected_component_maximal
connected_component_refl_eq connected_connected_component mem_Collect_eq set_eq_subset)
done
lemma connected_component_unique:
"\<lbrakk>x \<in> c; c \<subseteq> s; connected c;
\<And>c'. x \<in> c' \<and> c' \<subseteq> s \<and> connected c'
\<Longrightarrow> c' \<subseteq> c\<rbrakk>
\<Longrightarrow> connected_component_set s x = c"
apply (rule subset_antisym)
apply (meson connected_component_maximal connected_component_subset connected_connected_component contra_subsetD)
by (simp add: connected_component_maximal)
lemma joinable_connected_component_eq:
"\<lbrakk>connected t; t \<subseteq> s;
connected_component_set s x \<inter> t \<noteq> {};
connected_component_set s y \<inter> t \<noteq> {}\<rbrakk>
\<Longrightarrow> connected_component_set s x = connected_component_set s y"
apply (simp add: ex_in_conv [symmetric])
apply (rule connected_component_eq)
by (metis (no_types, hide_lams) connected_component_eq_eq connected_component_in connected_component_maximal subsetD mem_Collect_eq)
lemma Union_connected_component: "\<Union>(connected_component_set s ` s) = s"
apply (rule subset_antisym)
apply (simp add: SUP_least connected_component_subset)
using connected_component_refl_eq
by force
lemma complement_connected_component_unions:
"s - connected_component_set s x =
\<Union>(connected_component_set s ` s - {connected_component_set s x})"
apply (subst Union_connected_component [symmetric], auto)
apply (metis connected_component_eq_eq connected_component_in)
by (metis connected_component_eq mem_Collect_eq)
lemma connected_component_intermediate_subset:
"\<lbrakk>connected_component_set u a \<subseteq> t; t \<subseteq> u\<rbrakk>
\<Longrightarrow> connected_component_set t a = connected_component_set u a"
apply (case_tac "a \<in> u")
apply (simp add: connected_component_maximal connected_component_mono subset_antisym)
using connected_component_eq_empty by blast
subsection \<open>The set of connected components of a set\<close>
definition%important components:: "'a::topological_space set \<Rightarrow> 'a set set"
where "components s \<equiv> connected_component_set s ` s"
lemma components_iff: "s \<in> components u \<longleftrightarrow> (\<exists>x. x \<in> u \<and> s = connected_component_set u x)"
by (auto simp: components_def)
lemma componentsI: "x \<in> u \<Longrightarrow> connected_component_set u x \<in> components u"
by (auto simp: components_def)
lemma componentsE:
assumes "s \<in> components u"
obtains x where "x \<in> u" "s = connected_component_set u x"
using assms by (auto simp: components_def)
lemma Union_components [simp]: "\<Union>(components u) = u"
apply (rule subset_antisym)
using Union_connected_component components_def apply fastforce
apply (metis Union_connected_component components_def set_eq_subset)
done
lemma pairwise_disjoint_components: "pairwise (\<lambda>X Y. X \<inter> Y = {}) (components u)"
apply (simp add: pairwise_def)
apply (auto simp: components_iff)
apply (metis connected_component_eq_eq connected_component_in)+
done
lemma in_components_nonempty: "c \<in> components s \<Longrightarrow> c \<noteq> {}"
by (metis components_iff connected_component_eq_empty)
lemma in_components_subset: "c \<in> components s \<Longrightarrow> c \<subseteq> s"
using Union_components by blast
lemma in_components_connected: "c \<in> components s \<Longrightarrow> connected c"
by (metis components_iff connected_connected_component)
lemma in_components_maximal:
"c \<in> components s \<longleftrightarrow>
c \<noteq> {} \<and> c \<subseteq> s \<and> connected c \<and> (\<forall>d. d \<noteq> {} \<and> c \<subseteq> d \<and> d \<subseteq> s \<and> connected d \<longrightarrow> d = c)"
apply (rule iffI)
apply (simp add: in_components_nonempty in_components_connected)
apply (metis (full_types) components_iff connected_component_eq_self connected_component_intermediate_subset connected_component_refl in_components_subset mem_Collect_eq rev_subsetD)
apply (metis bot.extremum_uniqueI components_iff connected_component_eq_empty connected_component_maximal connected_component_subset connected_connected_component subset_emptyI)
done
lemma joinable_components_eq:
"connected t \<and> t \<subseteq> s \<and> c1 \<in> components s \<and> c2 \<in> components s \<and> c1 \<inter> t \<noteq> {} \<and> c2 \<inter> t \<noteq> {} \<Longrightarrow> c1 = c2"
by (metis (full_types) components_iff joinable_connected_component_eq)
lemma closed_components: "\<lbrakk>closed s; c \<in> components s\<rbrakk> \<Longrightarrow> closed c"
by (metis closed_connected_component components_iff)
lemma components_nonoverlap:
"\<lbrakk>c \<in> components s; c' \<in> components s\<rbrakk> \<Longrightarrow> (c \<inter> c' = {}) \<longleftrightarrow> (c \<noteq> c')"
apply (auto simp: in_components_nonempty components_iff)
using connected_component_refl apply blast
apply (metis connected_component_eq_eq connected_component_in)
by (metis connected_component_eq mem_Collect_eq)
lemma components_eq: "\<lbrakk>c \<in> components s; c' \<in> components s\<rbrakk> \<Longrightarrow> (c = c' \<longleftrightarrow> c \<inter> c' \<noteq> {})"
by (metis components_nonoverlap)
lemma components_eq_empty [simp]: "components s = {} \<longleftrightarrow> s = {}"
by (simp add: components_def)
lemma components_empty [simp]: "components {} = {}"
by simp
lemma connected_eq_connected_components_eq: "connected s \<longleftrightarrow> (\<forall>c \<in> components s. \<forall>c' \<in> components s. c = c')"
by (metis (no_types, hide_lams) components_iff connected_component_eq_eq connected_iff_connected_component)
lemma components_eq_sing_iff: "components s = {s} \<longleftrightarrow> connected s \<and> s \<noteq> {}"
apply (rule iffI)
using in_components_connected apply fastforce
apply safe
using Union_components apply fastforce
apply (metis components_iff connected_component_eq_self)
using in_components_maximal
apply auto
done
lemma components_eq_sing_exists: "(\<exists>a. components s = {a}) \<longleftrightarrow> connected s \<and> s \<noteq> {}"
apply (rule iffI)
using connected_eq_connected_components_eq apply fastforce
apply (metis components_eq_sing_iff)
done
lemma connected_eq_components_subset_sing: "connected s \<longleftrightarrow> components s \<subseteq> {s}"
by (metis Union_components components_empty components_eq_sing_iff connected_empty insert_subset order_refl subset_singletonD)
lemma connected_eq_components_subset_sing_exists: "connected s \<longleftrightarrow> (\<exists>a. components s \<subseteq> {a})"
by (metis components_eq_sing_exists connected_eq_components_subset_sing empty_iff subset_iff subset_singletonD)
lemma in_components_self: "s \<in> components s \<longleftrightarrow> connected s \<and> s \<noteq> {}"
by (metis components_empty components_eq_sing_iff empty_iff in_components_connected insertI1)
lemma components_maximal: "\<lbrakk>c \<in> components s; connected t; t \<subseteq> s; c \<inter> t \<noteq> {}\<rbrakk> \<Longrightarrow> t \<subseteq> c"
apply (simp add: components_def ex_in_conv [symmetric], clarify)
by (meson connected_component_def connected_component_trans)
lemma exists_component_superset: "\<lbrakk>t \<subseteq> s; s \<noteq> {}; connected t\<rbrakk> \<Longrightarrow> \<exists>c. c \<in> components s \<and> t \<subseteq> c"
apply (cases "t = {}", force)
apply (metis components_def ex_in_conv connected_component_maximal contra_subsetD image_eqI)
done
lemma components_intermediate_subset: "\<lbrakk>s \<in> components u; s \<subseteq> t; t \<subseteq> u\<rbrakk> \<Longrightarrow> s \<in> components t"
apply (auto simp: components_iff)
apply (metis connected_component_eq_empty connected_component_intermediate_subset)
done
lemma in_components_unions_complement: "c \<in> components s \<Longrightarrow> s - c = \<Union>(components s - {c})"
by (metis complement_connected_component_unions components_def components_iff)
lemma connected_intermediate_closure:
assumes cs: "connected s" and st: "s \<subseteq> t" and ts: "t \<subseteq> closure s"
shows "connected t"
proof (rule connectedI)
fix A B
assume A: "open A" and B: "open B" and Alap: "A \<inter> t \<noteq> {}" and Blap: "B \<inter> t \<noteq> {}"
and disj: "A \<inter> B \<inter> t = {}" and cover: "t \<subseteq> A \<union> B"
have disjs: "A \<inter> B \<inter> s = {}"
using disj st by auto
have "A \<inter> closure s \<noteq> {}"
using Alap Int_absorb1 ts by blast
then have Alaps: "A \<inter> s \<noteq> {}"
by (simp add: A open_Int_closure_eq_empty)
have "B \<inter> closure s \<noteq> {}"
using Blap Int_absorb1 ts by blast
then have Blaps: "B \<inter> s \<noteq> {}"
by (simp add: B open_Int_closure_eq_empty)
then show False
using cs [unfolded connected_def] A B disjs Alaps Blaps cover st
by blast
qed
lemma closedin_connected_component: "closedin (subtopology euclidean s) (connected_component_set s x)"
proof (cases "connected_component_set s x = {}")
case True
then show ?thesis
by (metis closedin_empty)
next
case False
then obtain y where y: "connected_component s x y"
by blast
have *: "connected_component_set s x \<subseteq> s \<inter> closure (connected_component_set s x)"
by (auto simp: closure_def connected_component_in)
have "connected_component s x y \<Longrightarrow> s \<inter> closure (connected_component_set s x) \<subseteq> connected_component_set s x"
apply (rule connected_component_maximal, simp)
using closure_subset connected_component_in apply fastforce
using * connected_intermediate_closure apply blast+
done
with y * show ?thesis
by (auto simp: closedin_closed)
qed
lemma closedin_component:
"C \<in> components s \<Longrightarrow> closedin (subtopology euclidean s) C"
using closedin_connected_component componentsE by blast
subsection%unimportant \<open>Proving a function is constant on a connected set
by proving that a level set is open\<close>
lemma continuous_levelset_openin_cases:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
openin (subtopology euclidean s) {x \<in> s. f x = a}
\<Longrightarrow> (\<forall>x \<in> s. f x \<noteq> a) \<or> (\<forall>x \<in> s. f x = a)"
unfolding connected_clopen
using continuous_closedin_preimage_constant by auto
lemma continuous_levelset_openin:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
openin (subtopology euclidean s) {x \<in> s. f x = a} \<Longrightarrow>
(\<exists>x \<in> s. f x = a) \<Longrightarrow> (\<forall>x \<in> s. f x = a)"
using continuous_levelset_openin_cases[of s f ]
by meson
lemma continuous_levelset_open:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
assumes "connected s"
and "continuous_on s f"
and "open {x \<in> s. f x = a}"
and "\<exists>x \<in> s. f x = a"
shows "\<forall>x \<in> s. f x = a"
using continuous_levelset_openin[OF assms(1,2), of a, unfolded openin_open]
using assms (3,4)
by fast
subsection%unimportant \<open>Preservation of Connectedness\<close>
lemma homeomorphic_connectedness:
assumes "s homeomorphic t"
shows "connected s \<longleftrightarrow> connected t"
using assms unfolding homeomorphic_def homeomorphism_def by (metis connected_continuous_image)
lemma connected_monotone_quotient_preimage:
assumes "connected T"
and contf: "continuous_on S f" and fim: "f ` S = T"
and opT: "\<And>U. U \<subseteq> T
\<Longrightarrow> openin (subtopology euclidean S) (S \<inter> f -` U) \<longleftrightarrow>
openin (subtopology euclidean T) U"
and connT: "\<And>y. y \<in> T \<Longrightarrow> connected (S \<inter> f -` {y})"
shows "connected S"
proof (rule connectedI)
fix U V
assume "open U" and "open V" and "U \<inter> S \<noteq> {}" and "V \<inter> S \<noteq> {}"
and "U \<inter> V \<inter> S = {}" and "S \<subseteq> U \<union> V"
moreover
have disjoint: "f ` (S \<inter> U) \<inter> f ` (S \<inter> V) = {}"
proof -
have False if "y \<in> f ` (S \<inter> U) \<inter> f ` (S \<inter> V)" for y
proof -
have "y \<in> T"
using fim that by blast
show ?thesis
using connectedD [OF connT [OF \<open>y \<in> T\<close>] \<open>open U\<close> \<open>open V\<close>]
\<open>S \<subseteq> U \<union> V\<close> \<open>U \<inter> V \<inter> S = {}\<close> that by fastforce
qed
then show ?thesis by blast
qed
ultimately have UU: "(S \<inter> f -` f ` (S \<inter> U)) = S \<inter> U" and VV: "(S \<inter> f -` f ` (S \<inter> V)) = S \<inter> V"
by auto
have opeU: "openin (subtopology euclidean T) (f ` (S \<inter> U))"
by (metis UU \<open>open U\<close> fim image_Int_subset le_inf_iff opT openin_open_Int)
have opeV: "openin (subtopology euclidean T) (f ` (S \<inter> V))"
by (metis opT fim VV \<open>open V\<close> openin_open_Int image_Int_subset inf.bounded_iff)
have "T \<subseteq> f ` (S \<inter> U) \<union> f ` (S \<inter> V)"
using \<open>S \<subseteq> U \<union> V\<close> fim by auto
then show False
using \<open>connected T\<close> disjoint opeU opeV \<open>U \<inter> S \<noteq> {}\<close> \<open>V \<inter> S \<noteq> {}\<close>
by (auto simp: connected_openin)
qed
lemma connected_open_monotone_preimage:
assumes contf: "continuous_on S f" and fim: "f ` S = T"
and ST: "\<And>C. openin (subtopology euclidean S) C \<Longrightarrow> openin (subtopology euclidean T) (f ` C)"
and connT: "\<And>y. y \<in> T \<Longrightarrow> connected (S \<inter> f -` {y})"
and "connected C" "C \<subseteq> T"
shows "connected (S \<inter> f -` C)"
proof -
have contf': "continuous_on (S \<inter> f -` C) f"
by (meson contf continuous_on_subset inf_le1)
have eqC: "f ` (S \<inter> f -` C) = C"
using \<open>C \<subseteq> T\<close> fim by blast
show ?thesis
proof (rule connected_monotone_quotient_preimage [OF \<open>connected C\<close> contf' eqC])
show "connected (S \<inter> f -` C \<inter> f -` {y})" if "y \<in> C" for y
proof -
have "S \<inter> f -` C \<inter> f -` {y} = S \<inter> f -` {y}"
using that by blast
moreover have "connected (S \<inter> f -` {y})"
using \<open>C \<subseteq> T\<close> connT that by blast
ultimately show ?thesis
by metis
qed
have "\<And>U. openin (subtopology euclidean (S \<inter> f -` C)) U
\<Longrightarrow> openin (subtopology euclidean C) (f ` U)"
using open_map_restrict [OF _ ST \<open>C \<subseteq> T\<close>] by metis
then show "\<And>D. D \<subseteq> C
\<Longrightarrow> openin (subtopology euclidean (S \<inter> f -` C)) (S \<inter> f -` C \<inter> f -` D) =
openin (subtopology euclidean C) D"
using open_map_imp_quotient_map [of "(S \<inter> f -` C)" f] contf' by (simp add: eqC)
qed
qed
lemma connected_closed_monotone_preimage:
assumes contf: "continuous_on S f" and fim: "f ` S = T"
and ST: "\<And>C. closedin (subtopology euclidean S) C \<Longrightarrow> closedin (subtopology euclidean T) (f ` C)"
and connT: "\<And>y. y \<in> T \<Longrightarrow> connected (S \<inter> f -` {y})"
and "connected C" "C \<subseteq> T"
shows "connected (S \<inter> f -` C)"
proof -
have contf': "continuous_on (S \<inter> f -` C) f"
by (meson contf continuous_on_subset inf_le1)
have eqC: "f ` (S \<inter> f -` C) = C"
using \<open>C \<subseteq> T\<close> fim by blast
show ?thesis
proof (rule connected_monotone_quotient_preimage [OF \<open>connected C\<close> contf' eqC])
show "connected (S \<inter> f -` C \<inter> f -` {y})" if "y \<in> C" for y
proof -
have "S \<inter> f -` C \<inter> f -` {y} = S \<inter> f -` {y}"
using that by blast
moreover have "connected (S \<inter> f -` {y})"
using \<open>C \<subseteq> T\<close> connT that by blast
ultimately show ?thesis
by metis
qed
have "\<And>U. closedin (subtopology euclidean (S \<inter> f -` C)) U
\<Longrightarrow> closedin (subtopology euclidean C) (f ` U)"
using closed_map_restrict [OF _ ST \<open>C \<subseteq> T\<close>] by metis
then show "\<And>D. D \<subseteq> C
\<Longrightarrow> openin (subtopology euclidean (S \<inter> f -` C)) (S \<inter> f -` C \<inter> f -` D) =
openin (subtopology euclidean C) D"
using closed_map_imp_quotient_map [of "(S \<inter> f -` C)" f] contf' by (simp add: eqC)
qed
qed
subsection\<open>A couple of lemmas about components (see Newman IV, 3.3 and 3.4)\<close>
lemma connected_Un_clopen_in_complement:
fixes S U :: "'a::metric_space set"
assumes "connected S" "connected U" "S \<subseteq> U"
and opeT: "openin (subtopology euclidean (U - S)) T"
and cloT: "closedin (subtopology euclidean (U - S)) T"
shows "connected (S \<union> T)"
proof -
have *: "\<lbrakk>\<And>x y. P x y \<longleftrightarrow> P y x; \<And>x y. P x y \<Longrightarrow> S \<subseteq> x \<or> S \<subseteq> y;
\<And>x y. \<lbrakk>P x y; S \<subseteq> x\<rbrakk> \<Longrightarrow> False\<rbrakk> \<Longrightarrow> \<not>(\<exists>x y. (P x y))" for P
by metis
show ?thesis
unfolding connected_closedin_eq
proof (rule *)
fix H1 H2
assume H: "closedin (subtopology euclidean (S \<union> T)) H1 \<and>
closedin (subtopology euclidean (S \<union> T)) H2 \<and>
H1 \<union> H2 = S \<union> T \<and> H1 \<inter> H2 = {} \<and> H1 \<noteq> {} \<and> H2 \<noteq> {}"
then have clo: "closedin (subtopology euclidean S) (S \<inter> H1)"
"closedin (subtopology euclidean S) (S \<inter> H2)"
by (metis Un_upper1 closedin_closed_subset inf_commute)+
have Seq: "S \<inter> (H1 \<union> H2) = S"
by (simp add: H)
have "S \<inter> ((S \<union> T) \<inter> H1) \<union> S \<inter> ((S \<union> T) \<inter> H2) = S"
using Seq by auto
moreover have "H1 \<inter> (S \<inter> ((S \<union> T) \<inter> H2)) = {}"
using H by blast
ultimately have "S \<inter> H1 = {} \<or> S \<inter> H2 = {}"
by (metis (no_types) H Int_assoc \<open>S \<inter> (H1 \<union> H2) = S\<close> \<open>connected S\<close>
clo Seq connected_closedin inf_bot_right inf_le1)
then show "S \<subseteq> H1 \<or> S \<subseteq> H2"
using H \<open>connected S\<close> unfolding connected_closedin by blast
next
fix H1 H2
assume H: "closedin (subtopology euclidean (S \<union> T)) H1 \<and>
closedin (subtopology euclidean (S \<union> T)) H2 \<and>
H1 \<union> H2 = S \<union> T \<and> H1 \<inter> H2 = {} \<and> H1 \<noteq> {} \<and> H2 \<noteq> {}"
and "S \<subseteq> H1"
then have H2T: "H2 \<subseteq> T"
by auto
have "T \<subseteq> U"
using Diff_iff opeT openin_imp_subset by auto
with \<open>S \<subseteq> U\<close> have Ueq: "U = (U - S) \<union> (S \<union> T)"
by auto
have "openin (subtopology euclidean ((U - S) \<union> (S \<union> T))) H2"
proof (rule openin_subtopology_Un)
show "openin (subtopology euclidean (S \<union> T)) H2"
using \<open>H2 \<subseteq> T\<close> apply (auto simp: openin_closedin_eq)
by (metis Diff_Diff_Int Diff_disjoint Diff_partition Diff_subset H Int_absorb1 Un_Diff)
then show "openin (subtopology euclidean (U - S)) H2"
by (meson H2T Un_upper2 opeT openin_subset_trans openin_trans)
qed
moreover have "closedin (subtopology euclidean ((U - S) \<union> (S \<union> T))) H2"
proof (rule closedin_subtopology_Un)
show "closedin (subtopology euclidean (U - S)) H2"
using H H2T cloT closedin_subset_trans
by (blast intro: closedin_subtopology_Un closedin_trans)
qed (simp add: H)
ultimately
have H2: "H2 = {} \<or> H2 = U"
using Ueq \<open>connected U\<close> unfolding connected_clopen by metis
then have "H2 \<subseteq> S"
by (metis Diff_partition H Un_Diff_cancel Un_subset_iff \<open>H2 \<subseteq> T\<close> assms(3) inf.orderE opeT openin_imp_subset)
moreover have "T \<subseteq> H2 - S"
by (metis (no_types) H2 H opeT openin_closedin_eq topspace_euclidean_subtopology)
ultimately show False
using H \<open>S \<subseteq> H1\<close> by blast
qed blast
qed
proposition component_diff_connected:
fixes S :: "'a::metric_space set"
assumes "connected S" "connected U" "S \<subseteq> U" and C: "C \<in> components (U - S)"
shows "connected(U - C)"
using \<open>connected S\<close> unfolding connected_closedin_eq not_ex de_Morgan_conj
proof clarify
fix H3 H4
assume clo3: "closedin (subtopology euclidean (U - C)) H3"
and clo4: "closedin (subtopology euclidean (U - C)) H4"
and "H3 \<union> H4 = U - C" and "H3 \<inter> H4 = {}" and "H3 \<noteq> {}" and "H4 \<noteq> {}"
and * [rule_format]:
"\<forall>H1 H2. \<not> closedin (subtopology euclidean S) H1 \<or>
\<not> closedin (subtopology euclidean S) H2 \<or>
H1 \<union> H2 \<noteq> S \<or> H1 \<inter> H2 \<noteq> {} \<or> \<not> H1 \<noteq> {} \<or> \<not> H2 \<noteq> {}"
then have "H3 \<subseteq> U-C" and ope3: "openin (subtopology euclidean (U - C)) (U - C - H3)"
and "H4 \<subseteq> U-C" and ope4: "openin (subtopology euclidean (U - C)) (U - C - H4)"
by (auto simp: closedin_def)
have "C \<noteq> {}" "C \<subseteq> U-S" "connected C"
using C in_components_nonempty in_components_subset in_components_maximal by blast+
have cCH3: "connected (C \<union> H3)"
proof (rule connected_Un_clopen_in_complement [OF \<open>connected C\<close> \<open>connected U\<close> _ _ clo3])
show "openin (subtopology euclidean (U - C)) H3"
apply (simp add: openin_closedin_eq \<open>H3 \<subseteq> U - C\<close>)
apply (simp add: closedin_subtopology)
by (metis Diff_cancel Diff_triv Un_Diff clo4 \<open>H3 \<inter> H4 = {}\<close> \<open>H3 \<union> H4 = U - C\<close> closedin_closed inf_commute sup_bot.left_neutral)
qed (use clo3 \<open>C \<subseteq> U - S\<close> in auto)
have cCH4: "connected (C \<union> H4)"
proof (rule connected_Un_clopen_in_complement [OF \<open>connected C\<close> \<open>connected U\<close> _ _ clo4])
show "openin (subtopology euclidean (U - C)) H4"
apply (simp add: openin_closedin_eq \<open>H4 \<subseteq> U - C\<close>)
apply (simp add: closedin_subtopology)
by (metis Diff_cancel Int_commute Un_Diff Un_Diff_Int \<open>H3 \<inter> H4 = {}\<close> \<open>H3 \<union> H4 = U - C\<close> clo3 closedin_closed)
qed (use clo4 \<open>C \<subseteq> U - S\<close> in auto)
have "closedin (subtopology euclidean S) (S \<inter> H3)" "closedin (subtopology euclidean S) (S \<inter> H4)"
using clo3 clo4 \<open>S \<subseteq> U\<close> \<open>C \<subseteq> U - S\<close> by (auto simp: closedin_closed)
moreover have "S \<inter> H3 \<noteq> {}"
using components_maximal [OF C cCH3] \<open>C \<noteq> {}\<close> \<open>C \<subseteq> U - S\<close> \<open>H3 \<noteq> {}\<close> \<open>H3 \<subseteq> U - C\<close> by auto
moreover have "S \<inter> H4 \<noteq> {}"
using components_maximal [OF C cCH4] \<open>C \<noteq> {}\<close> \<open>C \<subseteq> U - S\<close> \<open>H4 \<noteq> {}\<close> \<open>H4 \<subseteq> U - C\<close> by auto
ultimately show False
using * [of "S \<inter> H3" "S \<inter> H4"] \<open>H3 \<inter> H4 = {}\<close> \<open>C \<subseteq> U - S\<close> \<open>H3 \<union> H4 = U - C\<close> \<open>S \<subseteq> U\<close>
by auto
qed
subsection%unimportant\<open>Constancy of a function from a connected set into a finite, disconnected or discrete set\<close>
text\<open>Still missing: versions for a set that is smaller than R, or countable.\<close>
lemma continuous_disconnected_range_constant:
assumes S: "connected S"
and conf: "continuous_on S f"
and fim: "f ` S \<subseteq> t"
and cct: "\<And>y. y \<in> t \<Longrightarrow> connected_component_set t y = {y}"
shows "f constant_on S"
proof (cases "S = {}")
case True then show ?thesis
by (simp add: constant_on_def)
next
case False
{ fix x assume "x \<in> S"
then have "f ` S \<subseteq> {f x}"
by (metis connected_continuous_image conf connected_component_maximal fim image_subset_iff rev_image_eqI S cct)
}
with False show ?thesis
unfolding constant_on_def by blast
qed
text\<open>This proof requires the existence of two separate values of the range type.\<close>
lemma finite_range_constant_imp_connected:
assumes "\<And>f::'a::topological_space \<Rightarrow> 'b::real_normed_algebra_1.
\<lbrakk>continuous_on S f; finite(f ` S)\<rbrakk> \<Longrightarrow> f constant_on S"
shows "connected S"
proof -
{ fix t u
assume clt: "closedin (subtopology euclidean S) t"
and clu: "closedin (subtopology euclidean S) u"
and tue: "t \<inter> u = {}" and tus: "t \<union> u = S"
have conif: "continuous_on S (\<lambda>x. if x \<in> t then 0 else 1)"
apply (subst tus [symmetric])
apply (rule continuous_on_cases_local)
using clt clu tue
apply (auto simp: tus continuous_on_const)
done
have fi: "finite ((\<lambda>x. if x \<in> t then 0 else 1) ` S)"
by (rule finite_subset [of _ "{0,1}"]) auto
have "t = {} \<or> u = {}"
using assms [OF conif fi] tus [symmetric]
by (auto simp: Ball_def constant_on_def) (metis IntI empty_iff one_neq_zero tue)
}
then show ?thesis
by (simp add: connected_closedin_eq)
qed
end