Clarification: free variables allowed in interpreted locale instances.
%
\begin{isabellebody}%
\def\isabellecontext{case{\isaliteral{5F}{\isacharunderscore}}exprs}%
%
\isadelimtheory
%
\endisadelimtheory
%
\isatagtheory
%
\endisatagtheory
{\isafoldtheory}%
%
\isadelimtheory
%
\endisadelimtheory
%
\begin{isamarkuptext}%
\subsection{Case Expressions}
\label{sec:case-expressions}\index{*case expressions}%
HOL also features \isa{case}-expressions for analyzing
elements of a datatype. For example,
\begin{isabelle}%
\ \ \ \ \ case\ xs\ of\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{7C}{\isacharbar}}\ y\ {\isaliteral{23}{\isacharhash}}\ ys\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ y%
\end{isabelle}
evaluates to \isa{{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}} if \isa{xs} is \isa{{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}} and to \isa{y} if
\isa{xs} is \isa{y\ {\isaliteral{23}{\isacharhash}}\ ys}. (Since the result in both branches must be of
the same type, it follows that \isa{y} is of type \isa{{\isaliteral{27}{\isacharprime}}a\ list} and hence
that \isa{xs} is of type \isa{{\isaliteral{27}{\isacharprime}}a\ list\ list}.)
In general, case expressions are of the form
\[
\begin{array}{c}
\isa{case}~e~\isa{of}\ pattern@1~\isa{{\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}}~e@1\ \isa{{\isaliteral{7C}{\isacharbar}}}\ \dots\
\isa{{\isaliteral{7C}{\isacharbar}}}~pattern@m~\isa{{\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}}~e@m
\end{array}
\]
Like in functional programming, patterns are expressions consisting of
datatype constructors (e.g. \isa{{\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}} and \isa{{\isaliteral{23}{\isacharhash}}})
and variables, including the wildcard ``\verb$_$''.
Not all cases need to be covered and the order of cases matters.
However, one is well-advised not to wallow in complex patterns because
complex case distinctions tend to induce complex proofs.
\begin{warn}
Internally Isabelle only knows about exhaustive case expressions with
non-nested patterns: $pattern@i$ must be of the form
$C@i~x@ {i1}~\dots~x@ {ik@i}$ and $C@1, \dots, C@m$ must be exactly the
constructors of the type of $e$.
%
More complex case expressions are automatically
translated into the simpler form upon parsing but are not translated
back for printing. This may lead to surprising output.
\end{warn}
\begin{warn}
Like \isa{if}, \isa{case}-expressions may need to be enclosed in
parentheses to indicate their scope.
\end{warn}
\subsection{Structural Induction and Case Distinction}
\label{sec:struct-ind-case}
\index{case distinctions}\index{induction!structural}%
Induction is invoked by \methdx{induct_tac}, as we have seen above;
it works for any datatype. In some cases, induction is overkill and a case
distinction over all constructors of the datatype suffices. This is performed
by \methdx{case_tac}. Here is a trivial example:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\isamarkupfalse%
\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}case\ xs\ of\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{7C}{\isacharbar}}\ y{\isaliteral{23}{\isacharhash}}ys\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
%
\isadelimproof
%
\endisadelimproof
%
\isatagproof
\isacommand{apply}\isamarkupfalse%
{\isaliteral{28}{\isacharparenleft}}case{\isaliteral{5F}{\isacharunderscore}}tac\ xs{\isaliteral{29}{\isacharparenright}}%
\begin{isamarkuptxt}%
\noindent
results in the proof state
\begin{isabelle}%
\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ xs\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}case\ xs\ of\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{7C}{\isacharbar}}\ y\ {\isaliteral{23}{\isacharhash}}\ ys\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs\isanewline
\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}a\ list{\isaliteral{2E}{\isachardot}}\isanewline
\isaindent{\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ \ \ \ }xs\ {\isaliteral{3D}{\isacharequal}}\ a\ {\isaliteral{23}{\isacharhash}}\ list\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}case\ xs\ of\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{7C}{\isacharbar}}\ y\ {\isaliteral{23}{\isacharhash}}\ ys\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ xs{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ xs%
\end{isabelle}
which is solved automatically:%
\end{isamarkuptxt}%
\isamarkuptrue%
\isacommand{apply}\isamarkupfalse%
{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}%
\endisatagproof
{\isafoldproof}%
%
\isadelimproof
%
\endisadelimproof
%
\begin{isamarkuptext}%
Note that we do not need to give a lemma a name if we do not intend to refer
to it explicitly in the future.
Other basic laws about a datatype are applied automatically during
simplification, so no special methods are provided for them.
\begin{warn}
Induction is only allowed on free (or \isasymAnd-bound) variables that
should not occur among the assumptions of the subgoal; see
\S\ref{sec:ind-var-in-prems} for details. Case distinction
(\isa{case{\isaliteral{5F}{\isacharunderscore}}tac}) works for arbitrary terms, which need to be
quoted if they are non-atomic. However, apart from \isa{{\isaliteral{5C3C416E643E}{\isasymAnd}}}-bound
variables, the terms must not contain variables that are bound outside.
For example, given the goal \isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}xs{\isaliteral{2E}{\isachardot}}\ xs\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isaliteral{5D}{\isacharbrackright}}\ {\isaliteral{5C3C6F723E}{\isasymor}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}y\ ys{\isaliteral{2E}{\isachardot}}\ xs\ {\isaliteral{3D}{\isacharequal}}\ y\ {\isaliteral{23}{\isacharhash}}\ ys{\isaliteral{29}{\isacharparenright}}},
\isa{case{\isaliteral{5F}{\isacharunderscore}}tac\ xs} will not work as expected because Isabelle interprets
the \isa{xs} as a new free variable distinct from the bound
\isa{xs} in the goal.
\end{warn}%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isadelimtheory
%
\endisadelimtheory
%
\isatagtheory
%
\endisatagtheory
{\isafoldtheory}%
%
\isadelimtheory
%
\endisadelimtheory
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: