(* Title: Tools/code/code_thingol.ML
ID: $Id$
Author: Florian Haftmann, TU Muenchen
Intermediate language ("Thin-gol") representing executable code.
Representation and translation.
*)
infix 8 `%%;
infix 4 `$;
infix 4 `$$;
infixr 3 `|->;
infixr 3 `|-->;
signature BASIC_CODE_THINGOL =
sig
type vname = string;
datatype dict =
DictConst of string * dict list list
| DictVar of string list * (vname * (int * int));
datatype itype =
`%% of string * itype list
| ITyVar of vname;
type const = string * (dict list list * itype list (*types of arguments*))
datatype iterm =
IConst of const
| IVar of vname
| `$ of iterm * iterm
| `|-> of (vname * itype) * iterm
| ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
(*((term, type), [(selector pattern, body term )]), primitive term)*)
val `$$ : iterm * iterm list -> iterm;
val `|--> : (vname * itype) list * iterm -> iterm;
type typscheme = (vname * sort) list * itype;
end;
signature CODE_THINGOL =
sig
include BASIC_CODE_THINGOL
val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list
val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a
val unfold_fun: itype -> itype list * itype
val unfold_app: iterm -> iterm * iterm list
val split_abs: iterm -> (((vname * iterm option) * itype) * iterm) option
val unfold_abs: iterm -> ((vname * iterm option) * itype) list * iterm
val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option
val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm
val unfold_const_app: iterm ->
((string * (dict list list * itype list)) * iterm list) option
val collapse_let: ((vname * itype) * iterm) * iterm
-> (iterm * itype) * (iterm * iterm) list
val eta_expand: int -> (string * (dict list list * itype list)) * iterm list -> iterm
val contains_dictvar: iterm -> bool
val locally_monomorphic: iterm -> bool
val fold_constnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
val fold_unbound_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
type naming
val empty_naming: naming
val lookup_class: naming -> class -> string option
val lookup_classrel: naming -> class * class -> string option
val lookup_tyco: naming -> string -> string option
val lookup_instance: naming -> class * string -> string option
val lookup_const: naming -> string -> string option
datatype stmt =
NoStmt
| Fun of string * (typscheme * ((iterm list * iterm) * (thm * bool)) list)
| Datatype of string * ((vname * sort) list * (string * itype list) list)
| Datatypecons of string * string
| Class of class * (vname * ((class * string) list * (string * itype) list))
| Classrel of class * class
| Classparam of string * class
| Classinst of (class * (string * (vname * sort) list))
* ((class * (string * (string * dict list list))) list
* ((string * const) * (thm * bool)) list)
type program = stmt Graph.T
val empty_funs: program -> string list
val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm
val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt
val is_cons: program -> string -> bool
val contr_classparam_typs: program -> string -> itype option list
val consts_program: theory -> string list -> string list * (naming * program)
val cached_program: theory -> naming * program
val eval_conv: theory
-> (term -> term * (naming -> program -> typscheme * iterm -> string list -> thm))
-> cterm -> thm
val eval_term: theory
-> (term -> term * (naming -> program -> typscheme * iterm -> string list -> 'a))
-> term -> 'a
end;
structure Code_Thingol: CODE_THINGOL =
struct
(** auxiliary **)
fun unfoldl dest x =
case dest x
of NONE => (x, [])
| SOME (x1, x2) =>
let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
fun unfoldr dest x =
case dest x
of NONE => ([], x)
| SOME (x1, x2) =>
let val (xs', x') = unfoldr dest x2 in (x1::xs', x') end;
(** language core - types, patterns, expressions **)
type vname = string;
datatype dict =
DictConst of string * dict list list
| DictVar of string list * (vname * (int * int));
datatype itype =
`%% of string * itype list
| ITyVar of vname;
type const = string * (dict list list * itype list (*types of arguments*))
datatype iterm =
IConst of const
| IVar of vname
| `$ of iterm * iterm
| `|-> of (vname * itype) * iterm
| ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
(*see also signature*)
(*
variable naming conventions
bare names:
variable names v
class names class
type constructor names tyco
datatype names dtco
const names (general) c (const)
constructor names co
class parameter names classparam
arbitrary name s
v, c, co, classparam also annotated with types etc.
constructs:
sort sort
type parameters vs
type ty
type schemes tysm
term t
(term as pattern) p
instance (class, tyco) inst
*)
val op `$$ = Library.foldl (op `$);
val op `|--> = Library.foldr (op `|->);
val unfold_app = unfoldl
(fn op `$ t => SOME t
| _ => NONE);
val split_abs =
(fn (v, ty) `|-> (t as ICase (((IVar w, _), [(p, t')]), _)) =>
if v = w then SOME (((v, SOME p), ty), t') else SOME (((v, NONE), ty), t)
| (v, ty) `|-> t => SOME (((v, NONE), ty), t)
| _ => NONE);
val unfold_abs = unfoldr split_abs;
val split_let =
(fn ICase (((td, ty), [(p, t)]), _) => SOME (((p, ty), td), t)
| _ => NONE);
val unfold_let = unfoldr split_let;
fun unfold_const_app t =
case unfold_app t
of (IConst c, ts) => SOME (c, ts)
| _ => NONE;
fun fold_aiterms f (t as IConst _) = f t
| fold_aiterms f (t as IVar _) = f t
| fold_aiterms f (t1 `$ t2) = fold_aiterms f t1 #> fold_aiterms f t2
| fold_aiterms f (t as _ `|-> t') = f t #> fold_aiterms f t'
| fold_aiterms f (ICase (_, t)) = fold_aiterms f t;
fun fold_constnames f =
let
fun add (IConst (c, _)) = f c
| add _ = I;
in fold_aiterms add end;
fun fold_varnames f =
let
fun add (IVar v) = f v
| add ((v, _) `|-> _) = f v
| add _ = I;
in fold_aiterms add end;
fun fold_unbound_varnames f =
let
fun add _ (IConst _) = I
| add vs (IVar v) = if not (member (op =) vs v) then f v else I
| add vs (t1 `$ t2) = add vs t1 #> add vs t2
| add vs ((v, _) `|-> t) = add (insert (op =) v vs) t
| add vs (ICase (_, t)) = add vs t;
in add [] end;
fun collapse_let (((v, ty), se), be as ICase (((IVar w, _), ds), _)) =
let
fun exists_v t = fold_unbound_varnames (fn w => fn b =>
b orelse v = w) t false;
in if v = w andalso forall (fn (t1, t2) =>
exists_v t1 orelse not (exists_v t2)) ds
then ((se, ty), ds)
else ((se, ty), [(IVar v, be)])
end
| collapse_let (((v, ty), se), be) =
((se, ty), [(IVar v, be)])
fun eta_expand k (c as (_, (_, tys)), ts) =
let
val j = length ts;
val l = k - j;
val ctxt = (fold o fold_varnames) Name.declare ts Name.context;
val vs_tys = Name.names ctxt "a" ((curry Library.take l o curry Library.drop j) tys);
in vs_tys `|--> IConst c `$$ ts @ map (fn (v, _) => IVar v) vs_tys end;
fun contains_dictvar t =
let
fun contains (DictConst (_, dss)) = (fold o fold) contains dss
| contains (DictVar _) = K true;
in
fold_aiterms
(fn IConst (_, (dss, _)) => (fold o fold) contains dss | _ => I) t false
end;
fun locally_monomorphic (IConst _) = false
| locally_monomorphic (IVar _) = true
| locally_monomorphic (t `$ _) = locally_monomorphic t
| locally_monomorphic (_ `|-> t) = locally_monomorphic t
| locally_monomorphic (ICase ((_, ds), _)) = exists (locally_monomorphic o snd) ds;
(** namings **)
(* policies *)
local
fun thyname_of thy f x = the (AList.lookup (op =) (f x) Markup.theory_nameN);
fun thyname_of_class thy =
thyname_of thy (ProofContext.query_class (ProofContext.init thy));
fun thyname_of_tyco thy =
thyname_of thy (Type.the_tags (Sign.tsig_of thy));
fun thyname_of_instance thy inst = case AxClass.arity_property thy inst Markup.theory_nameN
of [] => error ("no such instance: " ^ quote (snd inst ^ " :: " ^ fst inst))
| thyname :: _ => thyname;
fun thyname_of_const thy c = case AxClass.class_of_param thy c
of SOME class => thyname_of_class thy class
| NONE => (case Code.get_datatype_of_constr thy c
of SOME dtco => thyname_of_tyco thy dtco
| NONE => thyname_of thy (Consts.the_tags (Sign.consts_of thy)) c);
fun namify thy get_basename get_thyname name =
let
val prefix = get_thyname thy name;
val base = (Code_Name.purify_base true o get_basename) name;
in NameSpace.append prefix base end;
in
fun namify_class thy = namify thy NameSpace.base thyname_of_class;
fun namify_classrel thy = namify thy (fn (class1, class2) =>
NameSpace.base class2 ^ "_" ^ NameSpace.base class1) (fn thy => thyname_of_class thy o fst);
(*order fits nicely with composed projections*)
fun namify_tyco thy "fun" = "Pure.fun"
| namify_tyco thy tyco = namify thy NameSpace.base thyname_of_tyco tyco;
fun namify_instance thy = namify thy (fn (class, tyco) =>
NameSpace.base class ^ "_" ^ NameSpace.base tyco) thyname_of_instance;
fun namify_const thy = namify thy NameSpace.base thyname_of_const;
end; (* local *)
(* data *)
structure StringPairTab = Code_Name.StringPairTab;
datatype naming = Naming of {
class: class Symtab.table * Name.context,
classrel: string StringPairTab.table * Name.context,
tyco: string Symtab.table * Name.context,
instance: string StringPairTab.table * Name.context,
const: string Symtab.table * Name.context
}
fun dest_Naming (Naming naming) = naming;
val empty_naming = Naming {
class = (Symtab.empty, Name.context),
classrel = (StringPairTab.empty, Name.context),
tyco = (Symtab.empty, Name.context),
instance = (StringPairTab.empty, Name.context),
const = (Symtab.empty, Name.context)
};
local
fun mk_naming (class, classrel, tyco, instance, const) =
Naming { class = class, classrel = classrel,
tyco = tyco, instance = instance, const = const };
fun map_naming f (Naming { class, classrel, tyco, instance, const }) =
mk_naming (f (class, classrel, tyco, instance, const));
in
fun map_class f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(f class, classrel, tyco, inst, const));
fun map_classrel f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, f classrel, tyco, inst, const));
fun map_tyco f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, classrel, f tyco, inst, const));
fun map_instance f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, classrel, tyco, f inst, const));
fun map_const f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, classrel, tyco, inst, f const));
end; (*local*)
fun add_variant update (thing, name) (tab, used) =
let
val (name', used') = yield_singleton Name.variants name used;
val tab' = update (thing, name') tab;
in (tab', used') end;
fun declare thy mapp lookup update namify thing =
mapp (add_variant update (thing, namify thy thing))
#> `(fn naming => the (lookup naming thing));
(* lookup and declare *)
local
val suffix_class = "class";
val suffix_classrel = "classrel"
val suffix_tyco = "tyco";
val suffix_instance = "inst";
val suffix_const = "const";
fun add_suffix nsp NONE = NONE
| add_suffix nsp (SOME name) = SOME (NameSpace.append name nsp);
in
val lookup_class = add_suffix suffix_class
oo Symtab.lookup o fst o #class o dest_Naming;
val lookup_classrel = add_suffix suffix_classrel
oo StringPairTab.lookup o fst o #classrel o dest_Naming;
val lookup_tyco = add_suffix suffix_tyco
oo Symtab.lookup o fst o #tyco o dest_Naming;
val lookup_instance = add_suffix suffix_instance
oo StringPairTab.lookup o fst o #instance o dest_Naming;
val lookup_const = add_suffix suffix_const
oo Symtab.lookup o fst o #const o dest_Naming;
fun declare_class thy = declare thy map_class
lookup_class Symtab.update_new namify_class;
fun declare_classrel thy = declare thy map_classrel
lookup_classrel StringPairTab.update_new namify_classrel;
fun declare_tyco thy = declare thy map_tyco
lookup_tyco Symtab.update_new namify_tyco;
fun declare_instance thy = declare thy map_instance
lookup_instance StringPairTab.update_new namify_instance;
fun declare_const thy = declare thy map_const
lookup_const Symtab.update_new namify_const;
val unfold_fun = unfoldr
(fn "Pure.fun.tyco" `%% [ty1, ty2] => SOME (ty1, ty2)
| _ => NONE); (*depends on suffix_tyco and namify_tyco!*)
end; (* local *)
(** statements, abstract programs **)
type typscheme = (vname * sort) list * itype;
datatype stmt =
NoStmt
| Fun of string * (typscheme * ((iterm list * iterm) * (thm * bool)) list)
| Datatype of string * ((vname * sort) list * (string * itype list) list)
| Datatypecons of string * string
| Class of class * (vname * ((class * string) list * (string * itype) list))
| Classrel of class * class
| Classparam of string * class
| Classinst of (class * (string * (vname * sort) list))
* ((class * (string * (string * dict list list))) list
* ((string * const) * (thm * bool)) list);
type program = stmt Graph.T;
fun empty_funs program =
Graph.fold (fn (name, (Fun (c, (_, [])), _)) => cons c
| _ => I) program [];
fun map_terms_bottom_up f (t as IConst _) = f t
| map_terms_bottom_up f (t as IVar _) = f t
| map_terms_bottom_up f (t1 `$ t2) = f
(map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2)
| map_terms_bottom_up f ((v, ty) `|-> t) = f
((v, ty) `|-> map_terms_bottom_up f t)
| map_terms_bottom_up f (ICase (((t, ty), ps), t0)) = f
(ICase (((map_terms_bottom_up f t, ty), (map o pairself)
(map_terms_bottom_up f) ps), map_terms_bottom_up f t0));
fun map_terms_stmt f NoStmt = NoStmt
| map_terms_stmt f (Fun (c, (tysm, eqs))) = Fun (c, (tysm, (map o apfst)
(fn (ts, t) => (map f ts, f t)) eqs))
| map_terms_stmt f (stmt as Datatype _) = stmt
| map_terms_stmt f (stmt as Datatypecons _) = stmt
| map_terms_stmt f (stmt as Class _) = stmt
| map_terms_stmt f (stmt as Classrel _) = stmt
| map_terms_stmt f (stmt as Classparam _) = stmt
| map_terms_stmt f (Classinst (arity, (superarities, classparms))) =
Classinst (arity, (superarities, (map o apfst o apsnd) (fn const =>
case f (IConst const) of IConst const' => const') classparms));
fun is_cons program name = case Graph.get_node program name
of Datatypecons _ => true
| _ => false;
fun contr_classparam_typs program name = case Graph.get_node program name
of Classparam (_, class) => let
val Class (_, (_, (_, params))) = Graph.get_node program class;
val SOME ty = AList.lookup (op =) params name;
val (tys, res_ty) = unfold_fun ty;
fun no_tyvar (_ `%% tys) = forall no_tyvar tys
| no_tyvar (ITyVar _) = false;
in if no_tyvar res_ty
then map (fn ty => if no_tyvar ty then NONE else SOME ty) tys
else []
end
| _ => [];
(** translation kernel **)
(* generic mechanisms *)
fun ensure_stmt lookup declare generate thing (dep, (naming, program)) =
let
fun add_dep name = case dep of NONE => I
| SOME dep => Graph.add_edge (dep, name);
val (name, naming') = case lookup naming thing
of SOME name => (name, naming)
| NONE => declare thing naming;
in case try (Graph.get_node program) name
of SOME stmt => program
|> add_dep name
|> pair naming'
|> pair dep
|> pair name
| NONE => program
|> Graph.default_node (name, NoStmt)
|> add_dep name
|> pair naming'
|> curry generate (SOME name)
||> snd
|-> (fn stmt => (apsnd o Graph.map_node name) (K stmt))
|> pair dep
|> pair name
end;
fun not_wellsorted thy thm ty sort e =
let
val err_class = Sorts.class_error (Syntax.pp_global thy) e;
val err_thm = case thm
of SOME thm => "\n(in defining equation " ^ Display.string_of_thm thm ^ ")" | NONE => "";
val err_typ = "Type " ^ Syntax.string_of_typ_global thy ty ^ " not of sort "
^ Syntax.string_of_sort_global thy sort;
in error ("Wellsortedness error" ^ err_thm ^ ":\n" ^ err_typ ^ "\n" ^ err_class) end;
(* translation *)
fun ensure_class thy (algbr as (_, algebra)) funcgr class =
let
val superclasses = (Sorts.certify_sort algebra o Sorts.super_classes algebra) class;
val cs = #params (AxClass.get_info thy class);
val stmt_class =
fold_map (fn superclass => ensure_class thy algbr funcgr superclass
##>> ensure_classrel thy algbr funcgr (class, superclass)) superclasses
##>> fold_map (fn (c, ty) => ensure_const thy algbr funcgr c
##>> translate_typ thy algbr funcgr ty) cs
#>> (fn info => Class (class, (unprefix "'" Name.aT, info)))
in ensure_stmt lookup_class (declare_class thy) stmt_class class end
and ensure_classrel thy algbr funcgr (subclass, superclass) =
let
val stmt_classrel =
ensure_class thy algbr funcgr subclass
##>> ensure_class thy algbr funcgr superclass
#>> Classrel;
in ensure_stmt lookup_classrel (declare_classrel thy) stmt_classrel (subclass, superclass) end
and ensure_tyco thy algbr funcgr tyco =
let
val stmt_datatype =
let
val (vs, cos) = Code.get_datatype thy tyco;
in
fold_map (translate_tyvar_sort thy algbr funcgr) vs
##>> fold_map (fn (c, tys) =>
ensure_const thy algbr funcgr c
##>> fold_map (translate_typ thy algbr funcgr) tys) cos
#>> (fn info => Datatype (tyco, info))
end;
in ensure_stmt lookup_tyco (declare_tyco thy) stmt_datatype tyco end
and translate_tyvar_sort thy (algbr as (proj_sort, _)) funcgr (v, sort) =
fold_map (ensure_class thy algbr funcgr) (proj_sort sort)
#>> (fn sort => (unprefix "'" v, sort))
and translate_typ thy algbr funcgr (TFree v_sort) =
translate_tyvar_sort thy algbr funcgr v_sort
#>> (fn (v, sort) => ITyVar v)
| translate_typ thy algbr funcgr (Type (tyco, tys)) =
ensure_tyco thy algbr funcgr tyco
##>> fold_map (translate_typ thy algbr funcgr) tys
#>> (fn (tyco, tys) => tyco `%% tys)
and translate_dicts thy (algbr as (proj_sort, algebra)) funcgr thm (ty, sort) =
let
val pp = Syntax.pp_global thy;
datatype typarg =
Global of (class * string) * typarg list list
| Local of (class * class) list * (string * (int * sort));
fun class_relation (Global ((_, tyco), yss), _) class =
Global ((class, tyco), yss)
| class_relation (Local (classrels, v), subclass) superclass =
Local ((subclass, superclass) :: classrels, v);
fun type_constructor tyco yss class =
Global ((class, tyco), (map o map) fst yss);
fun type_variable (TFree (v, sort)) =
let
val sort' = proj_sort sort;
in map_index (fn (n, class) => (Local ([], (v, (n, sort'))), class)) sort' end;
val typargs = Sorts.of_sort_derivation pp algebra
{class_relation = class_relation, type_constructor = type_constructor,
type_variable = type_variable} (ty, proj_sort sort)
handle Sorts.CLASS_ERROR e => not_wellsorted thy thm ty sort e;
fun mk_dict (Global (inst, yss)) =
ensure_inst thy algbr funcgr inst
##>> (fold_map o fold_map) mk_dict yss
#>> (fn (inst, dss) => DictConst (inst, dss))
| mk_dict (Local (classrels, (v, (k, sort)))) =
fold_map (ensure_classrel thy algbr funcgr) classrels
#>> (fn classrels => DictVar (classrels, (unprefix "'" v, (k, length sort))))
in fold_map mk_dict typargs end
and translate_eq thy algbr funcgr (thm, linear) =
let
val (args, rhs) = (apfst (snd o strip_comb) o Logic.dest_equals
o Logic.unvarify o prop_of) thm;
in
fold_map (translate_term thy algbr funcgr (SOME thm)) args
##>> translate_term thy algbr funcgr (SOME thm) rhs
#>> rpair (thm, linear)
end
and ensure_inst thy (algbr as (_, algebra)) funcgr (class, tyco) =
let
val superclasses = (Sorts.certify_sort algebra o Sorts.super_classes algebra) class;
val classparams = these (try (#params o AxClass.get_info thy) class);
val vs = Name.names Name.context "'a" (Sorts.mg_domain algebra tyco [class]);
val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class];
val vs' = map2 (fn (v, sort1) => fn sort2 => (v,
Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts';
val arity_typ = Type (tyco, map TFree vs);
val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs');
fun translate_superarity superclass =
ensure_class thy algbr funcgr superclass
##>> ensure_classrel thy algbr funcgr (class, superclass)
##>> translate_dicts thy algbr funcgr NONE (arity_typ, [superclass])
#>> (fn ((superclass, classrel), [DictConst (inst, dss)]) =>
(superclass, (classrel, (inst, dss))));
fun translate_classparam_inst (c, ty) =
let
val c_inst = Const (c, map_type_tfree (K arity_typ') ty);
val thm = AxClass.unoverload_conv thy (Thm.cterm_of thy c_inst);
val c_ty = (apsnd Logic.unvarifyT o dest_Const o snd
o Logic.dest_equals o Thm.prop_of) thm;
in
ensure_const thy algbr funcgr c
##>> translate_const thy algbr funcgr (SOME thm) c_ty
#>> (fn (c, IConst c_inst) => ((c, c_inst), (thm, true)))
end;
val stmt_inst =
ensure_class thy algbr funcgr class
##>> ensure_tyco thy algbr funcgr tyco
##>> fold_map (translate_tyvar_sort thy algbr funcgr) vs
##>> fold_map translate_superarity superclasses
##>> fold_map translate_classparam_inst classparams
#>> (fn ((((class, tyco), arity), superarities), classparams) =>
Classinst ((class, (tyco, arity)), (superarities, classparams)));
in ensure_stmt lookup_instance (declare_instance thy) stmt_inst (class, tyco) end
and ensure_const thy algbr funcgr c =
let
fun stmt_datatypecons tyco =
ensure_tyco thy algbr funcgr tyco
#>> (fn tyco => Datatypecons (c, tyco));
fun stmt_classparam class =
ensure_class thy algbr funcgr class
#>> (fn class => Classparam (c, class));
fun stmt_fun ((vs, raw_ty), raw_thms) =
let
val ty = Logic.unvarifyT raw_ty;
val thms = if (null o Term.typ_tfrees) ty orelse (null o fst o strip_type) ty
then raw_thms
else (map o apfst) (Code_Unit.expand_eta thy 1) raw_thms;
in
fold_map (translate_tyvar_sort thy algbr funcgr) vs
##>> translate_typ thy algbr funcgr ty
##>> fold_map (translate_eq thy algbr funcgr) thms
#>> (fn info => Fun (c, info))
end;
val stmt_const = case Code.get_datatype_of_constr thy c
of SOME tyco => stmt_datatypecons tyco
| NONE => (case AxClass.class_of_param thy c
of SOME class => stmt_classparam class
| NONE => stmt_fun (Code_Funcgr.typ funcgr c, Code_Funcgr.eqns funcgr c))
in ensure_stmt lookup_const (declare_const thy) stmt_const c end
and translate_term thy algbr funcgr thm (Const (c, ty)) =
translate_app thy algbr funcgr thm ((c, ty), [])
| translate_term thy algbr funcgr thm (Free (v, _)) =
pair (IVar v)
| translate_term thy algbr funcgr thm (Abs (abs as (_, ty, _))) =
let
val (v, t) = Syntax.variant_abs abs;
in
translate_typ thy algbr funcgr ty
##>> translate_term thy algbr funcgr thm t
#>> (fn (ty, t) => (v, ty) `|-> t)
end
| translate_term thy algbr funcgr thm (t as _ $ _) =
case strip_comb t
of (Const (c, ty), ts) =>
translate_app thy algbr funcgr thm ((c, ty), ts)
| (t', ts) =>
translate_term thy algbr funcgr thm t'
##>> fold_map (translate_term thy algbr funcgr thm) ts
#>> (fn (t, ts) => t `$$ ts)
and translate_const thy algbr funcgr thm (c, ty) =
let
val tys = Sign.const_typargs thy (c, ty);
val sorts = (map snd o fst o Code_Funcgr.typ funcgr) c;
val tys_args = (fst o Term.strip_type) ty;
in
ensure_const thy algbr funcgr c
##>> fold_map (translate_dicts thy algbr funcgr thm) (tys ~~ sorts)
##>> fold_map (translate_typ thy algbr funcgr) tys_args
#>> (fn ((c, iss), tys) => IConst (c, (iss, tys)))
end
and translate_app_default thy algbr funcgr thm (c_ty, ts) =
translate_const thy algbr funcgr thm c_ty
##>> fold_map (translate_term thy algbr funcgr thm) ts
#>> (fn (t, ts) => t `$$ ts)
and translate_case thy algbr funcgr thm n cases (app as ((c, ty), ts)) =
let
val (tys, _) =
(chop (1 + (if null cases then 1 else length cases)) o fst o strip_type) ty;
val dt = nth ts n;
val dty = nth tys n;
fun is_undefined (Const (c, _)) = Code.is_undefined thy c
| is_undefined _ = false;
fun mk_case (co, n) t =
let
val _ = if (is_some o Code.get_datatype_of_constr thy) co then ()
else error ("Non-constructor " ^ quote co
^ " encountered in case pattern"
^ (case thm of NONE => ""
| SOME thm => ", in equation\n" ^ Display.string_of_thm thm))
val (vs, body) = Term.strip_abs_eta n t;
val selector = list_comb (Const (co, map snd vs ---> dty), map Free vs);
in if is_undefined body then NONE else SOME (selector, body) end;
fun mk_ds [] =
let
val ([v_ty], body) = Term.strip_abs_eta 1 (the_single (nth_drop n ts))
in [(Free v_ty, body)] end
| mk_ds cases = map_filter (uncurry mk_case)
(AList.make (Code_Unit.no_args thy) cases ~~ nth_drop n ts);
in
translate_term thy algbr funcgr thm dt
##>> translate_typ thy algbr funcgr dty
##>> fold_map (fn (pat, body) => translate_term thy algbr funcgr thm pat
##>> translate_term thy algbr funcgr thm body) (mk_ds cases)
##>> translate_app_default thy algbr funcgr thm app
#>> (fn (((dt, dty), ds), t0) => ICase (((dt, dty), ds), t0))
end
and translate_app thy algbr funcgr thm ((c, ty), ts) = case Code.get_case_data thy c
of SOME (n, cases) => let val i = 1 + (if null cases then 1 else length cases) in
if length ts < i then
let
val k = length ts;
val tys = (curry Library.take (i - k) o curry Library.drop k o fst o strip_type) ty;
val ctxt = (fold o fold_aterms)
(fn Free (v, _) => Name.declare v | _ => I) ts Name.context;
val vs = Name.names ctxt "a" tys;
in
fold_map (translate_typ thy algbr funcgr) tys
##>> translate_case thy algbr funcgr thm n cases ((c, ty), ts @ map Free vs)
#>> (fn (tys, t) => map2 (fn (v, _) => pair v) vs tys `|--> t)
end
else if length ts > i then
translate_case thy algbr funcgr thm n cases ((c, ty), Library.take (i, ts))
##>> fold_map (translate_term thy algbr funcgr thm) (Library.drop (i, ts))
#>> (fn (t, ts) => t `$$ ts)
else
translate_case thy algbr funcgr thm n cases ((c, ty), ts)
end
| NONE => translate_app_default thy algbr funcgr thm ((c, ty), ts);
(* store *)
structure Program = CodeDataFun
(
type T = naming * program;
val empty = (empty_naming, Graph.empty);
fun purge thy cs (naming, program) =
let
val names_delete = cs
|> map_filter (lookup_const naming)
|> filter (can (Graph.get_node program))
|> Graph.all_preds program;
val program' = Graph.del_nodes names_delete program;
in (naming, program') end;
);
val cached_program = Program.get;
fun invoke_generation thy funcgr f name =
Program.change_yield thy (fn naming_program => (NONE, naming_program)
|> f thy (Code.operational_algebra thy) funcgr name
|-> (fn name => fn (_, naming_program) => (name, naming_program)));
(* program generation *)
fun consts_program thy cs =
let
fun project_consts cs (naming, program) =
let
val cs_all = Graph.all_succs program cs;
in (cs, (naming, Graph.subgraph (member (op =) cs_all) program)) end;
fun generate_consts thy algebra funcgr =
fold_map (ensure_const thy algebra funcgr);
in
invoke_generation thy (Code_Funcgr.make thy cs) generate_consts cs
|-> project_consts
end;
(* value evaluation *)
fun ensure_value thy algbr funcgr t =
let
val ty = fastype_of t;
val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =)
o dest_TFree))) t [];
val stmt_value =
fold_map (translate_tyvar_sort thy algbr funcgr) vs
##>> translate_typ thy algbr funcgr ty
##>> translate_term thy algbr funcgr NONE t
#>> (fn ((vs, ty), t) => Fun
(Term.dummy_patternN, ((vs, ty), [(([], t), (Drule.dummy_thm, true))])));
fun term_value (dep, (naming, program1)) =
let
val Fun (_, ((vs, ty), [(([], t), _)])) =
Graph.get_node program1 Term.dummy_patternN;
val deps = Graph.imm_succs program1 Term.dummy_patternN;
val program2 = Graph.del_nodes [Term.dummy_patternN] program1;
val deps_all = Graph.all_succs program2 deps;
val program3 = Graph.subgraph (member (op =) deps_all) program2;
in (((naming, program3), (((vs, ty), t), deps)), (dep, (naming, program2))) end;
in
ensure_stmt ((K o K) NONE) pair stmt_value Term.dummy_patternN
#> snd
#> term_value
end;
fun eval thy evaluator t =
let
val (t', evaluator'') = evaluator t;
fun evaluator' funcgr =
let
val (((naming, program), (vs_ty_t, deps)), _) = invoke_generation thy funcgr ensure_value t';
in evaluator'' naming program vs_ty_t deps end;
in (t', evaluator') end
fun eval_conv thy = Code_Funcgr.eval_conv thy o eval thy;
fun eval_term thy = Code_Funcgr.eval_term thy o eval thy;
end; (*struct*)
structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;