(* Title: Pure/conv.ML
ID: $Id$
Author: Amine Chaieb and Makarius
Conversions: primitive equality reasoning.
*)
infix 1 then_conv;
infix 0 else_conv;
type conv = cterm -> thm;
signature CONV =
sig
val no_conv: conv
val all_conv: conv
val is_refl: thm -> bool
val then_conv: conv * conv -> conv
val else_conv: conv * conv -> conv
val first_conv: conv list -> conv
val every_conv: conv list -> conv
val try_conv: conv -> conv
val repeat_conv: conv -> conv
val cache_conv: conv -> conv
val abs_conv: conv -> conv
val combination_conv: conv -> conv -> conv
val comb_conv: conv -> conv
val arg_conv: conv -> conv
val fun_conv: conv -> conv
val arg1_conv: conv -> conv
val fun2_conv: conv -> conv
val binop_conv: conv -> conv
val forall_conv: int -> conv -> conv
val concl_conv: int -> conv -> conv
val prems_conv: int -> conv -> conv
val fconv_rule: conv -> thm -> thm
val gconv_rule: conv -> int -> thm -> thm
end;
structure Conv: CONV =
struct
(* conversionals *)
type conv = cterm -> thm;
fun no_conv _ = raise CTERM ("no conversion", []);
val all_conv = Thm.reflexive;
val is_refl = op aconv o Logic.dest_equals o Thm.prop_of;
fun (cv1 then_conv cv2) ct =
let
val eq1 = cv1 ct;
val eq2 = cv2 (Thm.rhs_of eq1);
in
if is_refl eq1 then eq2
else if is_refl eq2 then eq1
else Thm.transitive eq1 eq2
end;
fun (cv1 else_conv cv2) ct =
(cv1 ct
handle THM _ => cv2 ct
| CTERM _ => cv2 ct
| TERM _ => cv2 ct
| TYPE _ => cv2 ct);
fun first_conv cvs = fold_rev (curry op else_conv) cvs no_conv;
fun every_conv cvs = fold_rev (curry op then_conv) cvs all_conv;
fun try_conv cv = cv else_conv all_conv;
fun repeat_conv cv ct = try_conv (cv then_conv repeat_conv cv) ct;
fun cache_conv cv =
let
val cache = ref Termtab.empty;
fun conv ct =
(case Termtab.lookup (! cache) (Thm.term_of ct) of
SOME th => th
| NONE =>
let val th = cv ct
in change cache (Termtab.update (Thm.term_of ct, th)); th end);
in conv end;
(** Pure conversions **)
(* lambda terms *)
fun abs_conv cv ct =
(case Thm.term_of ct of
Abs (x, _, _) =>
let val (v, ct') = Thm.dest_abs (SOME (gensym "abs_")) ct
in Thm.abstract_rule x v (cv ct') end
| _ => raise CTERM ("abs_conv", [ct]));
fun combination_conv cv1 cv2 ct =
let val (ct1, ct2) = Thm.dest_comb ct
in Thm.combination (cv1 ct1) (cv2 ct2) end;
fun comb_conv cv = combination_conv cv cv;
fun arg_conv cv = combination_conv all_conv cv;
fun fun_conv cv = combination_conv cv all_conv;
val arg1_conv = fun_conv o arg_conv;
val fun2_conv = fun_conv o fun_conv;
fun binop_conv cv = combination_conv (arg_conv cv) cv;
(* logic *)
(*rewrite B in !!x1 ... xn. B*)
fun forall_conv 0 cv ct = cv ct
| forall_conv n cv ct =
(case try Thm.dest_comb ct of
NONE => cv ct
| SOME (A, B) =>
(case (Thm.term_of A, Thm.term_of B) of
(Const ("all", _), Abs (x, _, _)) =>
let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
Thm.combination (all_conv A)
(Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
end
| _ => cv ct));
(*rewrite B in A1 ==> ... ==> An ==> B*)
fun concl_conv 0 cv ct = cv ct
| concl_conv n cv ct =
(case try Thm.dest_implies ct of
NONE => cv ct
| SOME (A, B) => Drule.imp_cong_rule (all_conv A) (concl_conv (n - 1) cv B));
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
fun prems_conv 0 _ = all_conv
| prems_conv n cv =
let
fun conv i ct =
if i = n + 1 then all_conv ct
else
(case try Thm.dest_implies ct of
NONE => all_conv ct
| SOME (A, B) => Drule.imp_cong_rule (cv A) (conv (i + 1) B));
in conv 1 end;
fun fconv_rule cv th = Thm.equal_elim (cv (Thm.cprop_of th)) th; (*FCONV_RULE in LCF*)
fun gconv_rule cv i = Drule.with_subgoal i (fn th =>
(case try (Thm.dest_implies o Thm.cprop_of) th of
SOME (A, B) => Thm.equal_elim (Drule.imp_cong_rule (cv A) (all_conv B)) th
| NONE => raise THM ("gconv_rule", i, [th])));
end;