(* ID: $Id$
Author: Bernhard Haeupler
*)
header {* Some examples demonstrating the comm-ring method *}
theory Commutative_RingEx
imports Commutative_Ring
begin
lemma "4*(x::int)^5*y^3*x^2*3 + x*z + 3^5 = 12*x^7*y^3 + z*x + 243"
by comm_ring
lemma "((x::int) + y)^2 = x^2 + y^2 + 2*x*y"
by comm_ring
lemma "((x::int) + y)^3 = x^3 + y^3 + 3*x^2*y + 3*y^2*x"
by comm_ring
lemma "((x::int) - y)^3 = x^3 + 3*x*y^2 + (-3)*y*x^2 - y^3"
by comm_ring
lemma "((x::int) - y)^2 = x^2 + y^2 - 2*x*y"
by comm_ring
lemma " ((a::int) + b + c)^2 = a^2 + b^2 + c^2 + 2*a*b + 2*b*c + 2*a*c"
by comm_ring
lemma "((a::int) - b - c)^2 = a^2 + b^2 + c^2 - 2*a*b + 2*b*c - 2*a*c"
by comm_ring
lemma "(a::int)*b + a*c = a*(b+c)"
by comm_ring
lemma "(a::int)^2 - b^2 = (a - b) * (a + b)"
by comm_ring
lemma "(a::int)^3 - b^3 = (a - b) * (a^2 + a*b + b^2)"
by comm_ring
lemma "(a::int)^3 + b^3 = (a + b) * (a^2 - a*b + b^2)"
by comm_ring
lemma "(a::int)^4 - b^4 = (a - b) * (a + b)*(a^2 + b^2)"
by comm_ring
lemma "(a::int)^10 - b^10 = (a - b) * (a^9 + a^8*b + a^7*b^2 + a^6*b^3 + a^5*b^4 + a^4*b^5 + a^3*b^6 + a^2*b^7 + a*b^8 + b^9 )"
by comm_ring
end