(* Title: HOLCF/Sprod.thy
ID: $Id$
Author: Franz Regensburger and Brian Huffman
Strict product with typedef.
*)
header {* The type of strict products *}
theory Sprod
imports Cprod
begin
defaultsort pcpo
subsection {* Definition of strict product type *}
pcpodef (Sprod) ('a, 'b) "**" (infixr "**" 20) =
"{p::'a \<times> 'b. p = \<bottom> \<or> (cfst\<cdot>p \<noteq> \<bottom> \<and> csnd\<cdot>p \<noteq> \<bottom>)}"
by simp
syntax (xsymbols)
"**" :: "[type, type] => type" ("(_ \<otimes>/ _)" [21,20] 20)
syntax (HTML output)
"**" :: "[type, type] => type" ("(_ \<otimes>/ _)" [21,20] 20)
lemma spair_lemma:
"<strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a> \<in> Sprod"
by (simp add: Sprod_def strictify_conv_if cpair_strict)
subsection {* Definitions of constants *}
definition
sfst :: "('a ** 'b) \<rightarrow> 'a" where
"sfst = (\<Lambda> p. cfst\<cdot>(Rep_Sprod p))"
definition
ssnd :: "('a ** 'b) \<rightarrow> 'b" where
"ssnd = (\<Lambda> p. csnd\<cdot>(Rep_Sprod p))"
definition
spair :: "'a \<rightarrow> 'b \<rightarrow> ('a ** 'b)" where
"spair = (\<Lambda> a b. Abs_Sprod
<strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a>)"
definition
ssplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a ** 'b) \<rightarrow> 'c" where
"ssplit = (\<Lambda> f. strictify\<cdot>(\<Lambda> p. f\<cdot>(sfst\<cdot>p)\<cdot>(ssnd\<cdot>p)))"
syntax
"@stuple" :: "['a, args] => 'a ** 'b" ("(1'(:_,/ _:'))")
translations
"(:x, y, z:)" == "(:x, (:y, z:):)"
"(:x, y:)" == "CONST spair\<cdot>x\<cdot>y"
translations
"\<Lambda>(CONST spair\<cdot>x\<cdot>y). t" == "CONST ssplit\<cdot>(\<Lambda> x y. t)"
subsection {* Case analysis *}
lemma spair_Abs_Sprod:
"(:a, b:) = Abs_Sprod <strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a>"
apply (unfold spair_def)
apply (simp add: cont_Abs_Sprod spair_lemma)
done
lemma Exh_Sprod2:
"z = \<bottom> \<or> (\<exists>a b. z = (:a, b:) \<and> a \<noteq> \<bottom> \<and> b \<noteq> \<bottom>)"
apply (cases z rule: Abs_Sprod_cases)
apply (simp add: Sprod_def)
apply (erule disjE)
apply (simp add: Abs_Sprod_strict)
apply (rule disjI2)
apply (rule_tac x="cfst\<cdot>y" in exI)
apply (rule_tac x="csnd\<cdot>y" in exI)
apply (simp add: spair_Abs_Sprod Abs_Sprod_inject spair_lemma)
apply (simp add: surjective_pairing_Cprod2)
done
lemma sprodE [cases type: **]:
"\<lbrakk>p = \<bottom> \<Longrightarrow> Q; \<And>x y. \<lbrakk>p = (:x, y:); x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
by (cut_tac z=p in Exh_Sprod2, auto)
lemma sprod_induct [induct type: **]:
"\<lbrakk>P \<bottom>; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> P (:x, y:)\<rbrakk> \<Longrightarrow> P x"
by (cases x, simp_all)
subsection {* Properties of @{term spair} *}
lemma spair_strict1 [simp]: "(:\<bottom>, y:) = \<bottom>"
by (simp add: spair_Abs_Sprod strictify_conv_if cpair_strict Abs_Sprod_strict)
lemma spair_strict2 [simp]: "(:x, \<bottom>:) = \<bottom>"
by (simp add: spair_Abs_Sprod strictify_conv_if cpair_strict Abs_Sprod_strict)
lemma spair_strict: "x = \<bottom> \<or> y = \<bottom> \<Longrightarrow> (:x, y:) = \<bottom>"
by auto
lemma spair_strict_rev: "(:x, y:) \<noteq> \<bottom> \<Longrightarrow> x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>"
by (erule contrapos_np, auto)
lemma spair_defined [simp]:
"\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<noteq> \<bottom>"
by (simp add: spair_Abs_Sprod Abs_Sprod_defined Sprod_def)
lemma spair_defined_rev: "(:x, y:) = \<bottom> \<Longrightarrow> x = \<bottom> \<or> y = \<bottom>"
by (erule contrapos_pp, simp)
lemma spair_eq:
"\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ((:x, y:) = (:a, b:)) = (x = a \<and> y = b)"
apply (simp add: spair_Abs_Sprod)
apply (simp add: Abs_Sprod_inject [OF _ spair_lemma] Sprod_def)
apply (simp add: strictify_conv_if)
done
lemma spair_inject:
"\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>; (:x, y:) = (:a, b:)\<rbrakk> \<Longrightarrow> x = a \<and> y = b"
by (rule spair_eq [THEN iffD1])
lemma inst_sprod_pcpo2: "UU = (:UU,UU:)"
by simp
lemma Rep_Sprod_spair:
"Rep_Sprod (:a, b:) = <strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a>"
apply (unfold spair_def)
apply (simp add: cont_Abs_Sprod Abs_Sprod_inverse spair_lemma)
done
lemma compact_spair: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact (:x, y:)"
by (rule compact_Sprod, simp add: Rep_Sprod_spair strictify_conv_if)
subsection {* Properties of @{term sfst} and @{term ssnd} *}
lemma sfst_strict [simp]: "sfst\<cdot>\<bottom> = \<bottom>"
by (simp add: sfst_def cont_Rep_Sprod Rep_Sprod_strict)
lemma ssnd_strict [simp]: "ssnd\<cdot>\<bottom> = \<bottom>"
by (simp add: ssnd_def cont_Rep_Sprod Rep_Sprod_strict)
lemma sfst_spair [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>(:x, y:) = x"
by (simp add: sfst_def cont_Rep_Sprod Rep_Sprod_spair)
lemma ssnd_spair [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>(:x, y:) = y"
by (simp add: ssnd_def cont_Rep_Sprod Rep_Sprod_spair)
lemma sfst_defined_iff [simp]: "(sfst\<cdot>p = \<bottom>) = (p = \<bottom>)"
by (cases p, simp_all)
lemma ssnd_defined_iff [simp]: "(ssnd\<cdot>p = \<bottom>) = (p = \<bottom>)"
by (cases p, simp_all)
lemma sfst_defined: "p \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>p \<noteq> \<bottom>"
by simp
lemma ssnd_defined: "p \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>p \<noteq> \<bottom>"
by simp
lemma surjective_pairing_Sprod2: "(:sfst\<cdot>p, ssnd\<cdot>p:) = p"
by (cases p, simp_all)
lemma less_sprod: "x \<sqsubseteq> y = (sfst\<cdot>x \<sqsubseteq> sfst\<cdot>y \<and> ssnd\<cdot>x \<sqsubseteq> ssnd\<cdot>y)"
apply (simp add: less_Sprod_def sfst_def ssnd_def cont_Rep_Sprod)
apply (rule less_cprod)
done
lemma eq_sprod: "(x = y) = (sfst\<cdot>x = sfst\<cdot>y \<and> ssnd\<cdot>x = ssnd\<cdot>y)"
by (auto simp add: po_eq_conv less_sprod)
lemma spair_less:
"\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<sqsubseteq> (:a, b:) = (x \<sqsubseteq> a \<and> y \<sqsubseteq> b)"
apply (cases "a = \<bottom>", simp)
apply (cases "b = \<bottom>", simp)
apply (simp add: less_sprod)
done
subsection {* Properties of @{term ssplit} *}
lemma ssplit1 [simp]: "ssplit\<cdot>f\<cdot>\<bottom> = \<bottom>"
by (simp add: ssplit_def)
lemma ssplit2 [simp]: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ssplit\<cdot>f\<cdot>(:x, y:) = f\<cdot>x\<cdot>y"
by (simp add: ssplit_def)
lemma ssplit3 [simp]: "ssplit\<cdot>spair\<cdot>z = z"
by (cases z, simp_all)
end