(* Title: HOL/Library/EfficientNat.thy
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
*)
header {* Implementation of natural numbers by integers *}
theory EfficientNat
imports Main Pretty_Int
begin
text {*
When generating code for functions on natural numbers, the canonical
representation using @{term "0::nat"} and @{term "Suc"} is unsuitable for
computations involving large numbers. The efficiency of the generated
code can be improved drastically by implementing natural numbers by
integers. To do this, just include this theory.
*}
subsection {* Logical rewrites *}
text {*
An int-to-nat conversion
restricted to non-negative ints (in contrast to @{const nat}).
Note that this restriction has no logical relevance and
is just a kind of proof hint -- nothing prevents you from
writing nonsense like @{term "nat_of_int (-4)"}
*}
definition
nat_of_int :: "int \<Rightarrow> nat" where
"k \<ge> 0 \<Longrightarrow> nat_of_int k = nat k"
lemma nat_of_int_of_number_of:
fixes k
assumes "k \<ge> 0"
shows "number_of k = nat_of_int (number_of k)"
unfolding nat_of_int_def [OF prems] nat_number_of_def number_of_is_id ..
lemma nat_of_int_of_number_of_aux:
fixes k
assumes "Numeral.Pls \<le> k \<equiv> True"
shows "k \<ge> 0"
using prems unfolding Pls_def by simp
lemma nat_of_int_int:
"nat_of_int (int n) = n"
using zero_zle_int nat_of_int_def by simp
text {*
Case analysis on natural numbers is rephrased using a conditional
expression:
*}
lemma [code unfold, code inline del]:
"nat_case \<equiv> (\<lambda>f g n. if n = 0 then f else g (n - 1))"
proof -
have rewrite: "\<And>f g n. nat_case f g n = (if n = 0 then f else g (n - 1))"
proof -
fix f g n
show "nat_case f g n = (if n = 0 then f else g (n - 1))"
by (cases n) simp_all
qed
show "nat_case \<equiv> (\<lambda>f g n. if n = 0 then f else g (n - 1))"
by (rule eq_reflection ext rewrite)+
qed
lemma [code inline]:
"nat_case = (\<lambda>f g n. if n = 0 then f else g (nat_of_int (int n - 1)))"
proof (rule ext)+
fix f g n
show "nat_case f g n = (if n = 0 then f else g (nat_of_int (int n - 1)))"
by (cases n) (simp_all add: nat_of_int_int)
qed
text {*
Most standard arithmetic functions on natural numbers are implemented
using their counterparts on the integers:
*}
lemma [code func]: "0 = nat_of_int 0"
by (simp add: nat_of_int_def)
lemma [code func, code inline]: "1 = nat_of_int 1"
by (simp add: nat_of_int_def)
lemma [code func]: "Suc n = nat_of_int (int n + 1)"
by (simp add: nat_of_int_def)
lemma [code]: "m + n = nat (int m + int n)"
by arith
lemma [code func, code inline]: "m + n = nat_of_int (int m + int n)"
by (simp add: nat_of_int_def)
lemma [code, code inline]: "m - n = nat (int m - int n)"
by arith
lemma [code]: "m * n = nat (int m * int n)"
unfolding zmult_int by simp
lemma [code func, code inline]: "m * n = nat_of_int (int m * int n)"
proof -
have "int (m * n) = int m * int n"
by (induct m) (simp_all add: zadd_zmult_distrib)
then have "m * n = nat (int m * int n)" by auto
also have "\<dots> = nat_of_int (int m * int n)"
proof -
have "int m \<ge> 0" and "int n \<ge> 0" by auto
have "int m * int n \<ge> 0" by (rule split_mult_pos_le) auto
with nat_of_int_def show ?thesis by auto
qed
finally show ?thesis .
qed
lemma [code]: "m div n = nat (int m div int n)"
unfolding zdiv_int [symmetric] by simp
lemma [code func]: "m div n = fst (Divides.divmod m n)"
unfolding divmod_def by simp
lemma [code]: "m mod n = nat (int m mod int n)"
unfolding zmod_int [symmetric] by simp
lemma [code func]: "m mod n = snd (Divides.divmod m n)"
unfolding divmod_def by simp
lemma [code, code inline]: "(m < n) \<longleftrightarrow> (int m < int n)"
by simp
lemma [code func, code inline]: "(m \<le> n) \<longleftrightarrow> (int m \<le> int n)"
by simp
lemma [code func, code inline]: "m = n \<longleftrightarrow> int m = int n"
by simp
lemma [code func]: "nat k = (if k < 0 then 0 else nat_of_int k)"
proof (cases "k < 0")
case True then show ?thesis by simp
next
case False then show ?thesis by (simp add: nat_of_int_def)
qed
lemma [code func]:
"int_aux i n = (if int n = 0 then i else int_aux (i + 1) (nat_of_int (int n - 1)))"
proof -
have "0 < n \<Longrightarrow> int n = 1 + int (nat_of_int (int n - 1))"
proof -
assume prem: "n > 0"
then have "int n - 1 \<ge> 0" by auto
then have "nat_of_int (int n - 1) = nat (int n - 1)" by (simp add: nat_of_int_def)
with prem show "int n = 1 + int (nat_of_int (int n - 1))" by simp
qed
then show ?thesis unfolding int_aux_def by simp
qed
lemma div_nat_code [code func]:
"m div k = nat_of_int (fst (divAlg (int m, int k)))"
unfolding div_def [symmetric] zdiv_int [symmetric] nat_of_int_int ..
lemma mod_nat_code [code func]:
"m mod k = nat_of_int (snd (divAlg (int m, int k)))"
unfolding mod_def [symmetric] zmod_int [symmetric] nat_of_int_int ..
subsection {* Code generator setup for basic functions *}
text {*
@{typ nat} is no longer a datatype but embedded into the integers.
*}
code_datatype nat_of_int
code_type nat
(SML "IntInf.int")
(OCaml "Big'_int.big'_int")
(Haskell "Integer")
types_code
nat ("int")
attach (term_of) {*
val term_of_nat = HOLogic.mk_number HOLogic.natT o IntInf.fromInt;
*}
attach (test) {*
fun gen_nat i = random_range 0 i;
*}
consts_code
"0 \<Colon> nat" ("0")
Suc ("(_ + 1)")
text {*
Since natural numbers are implemented
using integers, the coercion function @{const "int"} of type
@{typ "nat \<Rightarrow> int"} is simply implemented by the identity function,
likewise @{const nat_of_int} of type @{typ "int \<Rightarrow> nat"}.
For the @{const "nat"} function for converting an integer to a natural
number, we give a specific implementation using an ML function that
returns its input value, provided that it is non-negative, and otherwise
returns @{text "0"}.
*}
consts_code
int ("(_)")
nat ("\<module>nat")
attach {*
fun nat i = if i < 0 then 0 else i;
*}
code_const int
(SML "_")
(OCaml "_")
(Haskell "_")
code_const nat_of_int
(SML "_")
(OCaml "_")
(Haskell "_")
subsection {* Preprocessors *}
text {*
Natural numerals should be expressed using @{const nat_of_int}.
*}
lemmas [code inline del] = nat_number_of_def
ML {*
fun nat_of_int_of_number_of thy cts =
let
val simplify_less = Simplifier.rewrite
(HOL_basic_ss addsimps (@{thms less_numeral_code} @ @{thms less_eq_numeral_code}));
fun mk_rew (t, ty) =
if ty = HOLogic.natT andalso IntInf.<= (0, HOLogic.dest_numeral t) then
Thm.capply @{cterm "(op \<le>) Numeral.Pls"} (Thm.cterm_of thy t)
|> simplify_less
|> (fn thm => @{thm nat_of_int_of_number_of_aux} OF [thm])
|> (fn thm => @{thm nat_of_int_of_number_of} OF [thm])
|> (fn thm => @{thm eq_reflection} OF [thm])
|> SOME
else NONE
in
fold (HOLogic.add_numerals_of o Thm.term_of) cts []
|> map_filter mk_rew
end;
*}
setup {*
CodegenData.add_inline_proc ("nat_of_int_of_number_of", nat_of_int_of_number_of)
*}
text {*
In contrast to @{term "Suc n"}, the term @{term "n + (1::nat)"} is no longer
a constructor term. Therefore, all occurrences of this term in a position
where a pattern is expected (i.e.\ on the left-hand side of a recursion
equation or in the arguments of an inductive relation in an introduction
rule) must be eliminated.
This can be accomplished by applying the following transformation rules:
*}
theorem Suc_if_eq: "(\<And>n. f (Suc n) = h n) \<Longrightarrow> f 0 = g \<Longrightarrow>
f n = (if n = 0 then g else h (n - 1))"
by (case_tac n) simp_all
theorem Suc_clause: "(\<And>n. P n (Suc n)) \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> P (n - 1) n"
by (case_tac n) simp_all
text {*
The rules above are built into a preprocessor that is plugged into
the code generator. Since the preprocessor for introduction rules
does not know anything about modes, some of the modes that worked
for the canonical representation of natural numbers may no longer work.
*}
(*<*)
ML {*
local
val Suc_if_eq = thm "Suc_if_eq";
val Suc_clause = thm "Suc_clause";
fun contains_suc t = member (op =) (term_consts t) "Suc";
in
fun remove_suc thy thms =
let
val Suc_if_eq' = Thm.transfer thy Suc_if_eq;
val vname = Name.variant (map fst
(fold (Term.add_varnames o Thm.full_prop_of) thms [])) "x";
val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
fun lhs_of th = snd (Thm.dest_comb
(fst (Thm.dest_comb (snd (Thm.dest_comb (cprop_of th))))));
fun rhs_of th = snd (Thm.dest_comb (snd (Thm.dest_comb (cprop_of th))));
fun find_vars ct = (case term_of ct of
(Const ("Suc", _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
| _ $ _ =>
let val (ct1, ct2) = Thm.dest_comb ct
in
map (apfst (fn ct => Thm.capply ct ct2)) (find_vars ct1) @
map (apfst (Thm.capply ct1)) (find_vars ct2)
end
| _ => []);
val eqs = List.concat (map
(fn th => map (pair th) (find_vars (lhs_of th))) thms);
fun mk_thms (th, (ct, cv')) =
let
val th' =
Thm.implies_elim
(Conv.fconv_rule (Thm.beta_conversion true)
(Drule.instantiate'
[SOME (ctyp_of_term ct)] [SOME (Thm.cabs cv ct),
SOME (Thm.cabs cv' (rhs_of th)), NONE, SOME cv']
Suc_if_eq')) (Thm.forall_intr cv' th)
in
case map_filter (fn th'' =>
SOME (th'', singleton
(Variable.trade (K (fn [th'''] => [th''' RS th'])) (Variable.thm_context th'')) th'')
handle THM _ => NONE) thms of
[] => NONE
| thps =>
let val (ths1, ths2) = split_list thps
in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
end
in
case get_first mk_thms eqs of
NONE => thms
| SOME x => remove_suc thy x
end;
fun eqn_suc_preproc thy ths =
let
val dest = fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of
in
if forall (can dest) ths andalso
exists (contains_suc o dest) ths
then remove_suc thy ths else ths
end;
fun remove_suc_clause thy thms =
let
val Suc_clause' = Thm.transfer thy Suc_clause;
val vname = Name.variant (map fst
(fold (Term.add_varnames o Thm.full_prop_of) thms [])) "x";
fun find_var (t as Const ("Suc", _) $ (v as Var _)) = SOME (t, v)
| find_var (t $ u) = (case find_var t of NONE => find_var u | x => x)
| find_var _ = NONE;
fun find_thm th =
let val th' = ObjectLogic.atomize_thm th
in Option.map (pair (th, th')) (find_var (prop_of th')) end
in
case get_first find_thm thms of
NONE => thms
| SOME ((th, th'), (Sucv, v)) =>
let
val cert = cterm_of (Thm.theory_of_thm th);
val th'' = ObjectLogic.rulify (Thm.implies_elim
(Conv.fconv_rule (Thm.beta_conversion true)
(Drule.instantiate' []
[SOME (cert (lambda v (Abs ("x", HOLogic.natT,
abstract_over (Sucv,
HOLogic.dest_Trueprop (prop_of th')))))),
SOME (cert v)] Suc_clause'))
(Thm.forall_intr (cert v) th'))
in
remove_suc_clause thy (map (fn th''' =>
if (op = o pairself prop_of) (th''', th) then th'' else th''') thms)
end
end;
fun clause_suc_preproc thy ths =
let
val dest = fst o HOLogic.dest_mem o HOLogic.dest_Trueprop
in
if forall (can (dest o concl_of)) ths andalso
exists (fn th => member (op =) (foldr add_term_consts
[] (map_filter (try dest) (concl_of th :: prems_of th))) "Suc") ths
then remove_suc_clause thy ths else ths
end;
end; (*local*)
fun lift_obj_eq f thy =
map (fn thm => thm RS @{thm meta_eq_to_obj_eq})
#> f thy
#> map (fn thm => thm RS @{thm eq_reflection});
*}
setup {*
Codegen.add_preprocessor eqn_suc_preproc
#> Codegen.add_preprocessor clause_suc_preproc
#> CodegenData.add_preproc ("eqn_Suc", lift_obj_eq eqn_suc_preproc)
#> CodegenData.add_preproc ("clause_Suc", lift_obj_eq clause_suc_preproc)
*}
(*>*)
subsection {* Module names *}
code_modulename SML
Nat Integer
EfficientNat Integer
code_modulename OCaml
Nat Integer
EfficientNat Integer
hide const nat_of_int
end