| author | haftmann | 
| Mon, 23 Mar 2009 19:01:16 +0100 | |
| changeset 30686 | 47a32dd1b86e | 
| parent 15582 | 7219facb3fd0 | 
| child 33688 | 1a97dcd8dc6a | 
| permissions | -rw-r--r-- | 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <!-- $Id$ --> <HTML> <HEAD> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> <TITLE>HOL/Induct/README</TITLE> </HEAD> <BODY> <H2>Induct--Examples of (Co)Inductive Definitions</H2> <P>This directory is a collection of small examples to demonstrate Isabelle/HOL's (co)inductive definitions package. Large examples appear on many other directories, such as Auth, IMP and Lambda. <UL> <LI><KBD>Comb</KBD> proves the Church-Rosser theorem for combinators (<A HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR396-lcp-generic-automatic-proof-tools.ps.gz">paper available</A>). <LI><KBD>Mutil</KBD> is the famous Mutilated Chess Board problem (<A HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR394-lcp-mutilated-chess-board.dvi.gz">paper available</A>). <LI><KBD>PropLog</KBD> proves the completeness of a formalization of propositional logic (<A HREF="http://www.cl.cam.ac.uk/Research/Reports/TR312-lcp-set-II.ps.gz">paper available</A>). <LI><KBD>LFilter</KBD> is an inductive/corecursive formalization of the <EM>filter</EM> functional for infinite streams. <LI><KBD>Exp</KBD> demonstrates the use of iterated inductive definitions to reason about mutually recursive relations. </UL> <HR> <ADDRESS> <A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A> </ADDRESS> </BODY></HTML>