| author | haftmann |
| Mon, 23 Mar 2009 19:01:16 +0100 | |
| changeset 30686 | 47a32dd1b86e |
| parent 30166 | f47c812de07c |
| child 32960 | 69916a850301 |
| permissions | -rw-r--r-- |
(* Title: SList.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: B. Wolff, University of Bremen Enriched theory of lists; mutual indirect recursive data-types. Definition of type 'a list (strict lists) by a least fixed point We use list(A) == lfp(%Z. {NUMB(0)} <+> A <*> Z) and not list == lfp(%Z. {NUMB(0)} <+> range(Leaf) <*> Z) so that list can serve as a "functor" for defining other recursive types. This enables the conservative construction of mutual recursive data-types such as datatype 'a m = Node 'a * ('a m) list Tidied by lcp. Still needs removal of nat_rec. *) header {* Extended List Theory (old) *} theory SList imports Sexp begin (*Hilbert_Choice is needed for the function "inv"*) (* *********************************************************************** *) (* *) (* Building up data type *) (* *) (* *********************************************************************** *) (* Defining the Concrete Constructors *) definition NIL :: "'a item" where "NIL = In0(Numb(0))" definition CONS :: "['a item, 'a item] => 'a item" where "CONS M N = In1(Scons M N)" inductive_set list :: "'a item set => 'a item set" for A :: "'a item set" where NIL_I: "NIL: list A" | CONS_I: "[| a: A; M: list A |] ==> CONS a M : list A" typedef (List) 'a list = "list(range Leaf) :: 'a item set" by (blast intro: list.NIL_I) abbreviation "Case == Datatype.Case" abbreviation "Split == Datatype.Split" definition List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" where "List_case c d = Case(%x. c)(Split(d))" definition List_rec :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" where "List_rec M c d = wfrec (pred_sexp^+) (%g. List_case c (%x y. d x y (g y))) M" (* *********************************************************************** *) (* *) (* Abstracting data type *) (* *) (* *********************************************************************** *) (*Declaring the abstract list constructors*) no_translations "[x, xs]" == "x#[xs]" "[x]" == "x#[]" no_notation Nil ("[]") and Cons (infixr "#" 65) definition Nil :: "'a list" ("[]") where "Nil = Abs_List(NIL)" definition "Cons" :: "['a, 'a list] => 'a list" (infixr "#" 65) where "x#xs = Abs_List(CONS (Leaf x)(Rep_List xs))" definition (* list Recursion -- the trancl is Essential; see list.ML *) list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" where "list_rec l c d = List_rec(Rep_List l) c (%x y r. d(inv Leaf x)(Abs_List y) r)" definition list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" where "list_case a f xs = list_rec xs a (%x xs r. f x xs)" (* list Enumeration *) translations "[x, xs]" == "x#[xs]" "[x]" == "x#[]" "case xs of [] => a | y#ys => b" == "CONST list_case(a, %y ys. b, xs)" (* *********************************************************************** *) (* *) (* Generalized Map Functionals *) (* *) (* *********************************************************************** *) (* Generalized Map Functionals *) definition Rep_map :: "('b => 'a item) => ('b list => 'a item)" where "Rep_map f xs = list_rec xs NIL(%x l r. CONS(f x) r)" definition Abs_map :: "('a item => 'b) => 'a item => 'b list" where "Abs_map g M = List_rec M Nil (%N L r. g(N)#r)" (**** Function definitions ****) definition null :: "'a list => bool" where "null xs = list_rec xs True (%x xs r. False)" definition hd :: "'a list => 'a" where "hd xs = list_rec xs (@x. True) (%x xs r. x)" definition tl :: "'a list => 'a list" where "tl xs = list_rec xs (@xs. True) (%x xs r. xs)" definition (* a total version of tl: *) ttl :: "'a list => 'a list" where "ttl xs = list_rec xs [] (%x xs r. xs)" no_notation member (infixl "mem" 55) definition member :: "['a, 'a list] => bool" (infixl "mem" 55) where "x mem xs = list_rec xs False (%y ys r. if y=x then True else r)" definition list_all :: "('a => bool) => ('a list => bool)" where "list_all P xs = list_rec xs True(%x l r. P(x) & r)" definition map :: "('a=>'b) => ('a list => 'b list)" where "map f xs = list_rec xs [] (%x l r. f(x)#r)" no_notation append (infixr "@" 65) definition append :: "['a list, 'a list] => 'a list" (infixr "@" 65) where "xs@ys = list_rec xs ys (%x l r. x#r)" definition filter :: "['a => bool, 'a list] => 'a list" where "filter P xs = list_rec xs [] (%x xs r. if P(x)then x#r else r)" definition foldl :: "[['b,'a] => 'b, 'b, 'a list] => 'b" where "foldl f a xs = list_rec xs (%a. a)(%x xs r.%a. r(f a x))(a)" definition foldr :: "[['a,'b] => 'b, 'b, 'a list] => 'b" where "foldr f a xs = list_rec xs a (%x xs r. (f x r))" definition length :: "'a list => nat" where "length xs = list_rec xs 0 (%x xs r. Suc r)" definition drop :: "['a list,nat] => 'a list" where "drop t n = (nat_rec(%x. x)(%m r xs. r(ttl xs)))(n)(t)" definition copy :: "['a, nat] => 'a list" where (* make list of n copies of x *) "copy t = nat_rec [] (%m xs. t # xs)" definition flat :: "'a list list => 'a list" where "flat = foldr (op @) []" definition nth :: "[nat, 'a list] => 'a" where "nth = nat_rec hd (%m r xs. r(tl xs))" definition rev :: "'a list => 'a list" where "rev xs = list_rec xs [] (%x xs xsa. xsa @ [x])" (* miscellaneous definitions *) definition zipWith :: "['a * 'b => 'c, 'a list * 'b list] => 'c list" where "zipWith f S = (list_rec (fst S) (%T.[]) (%x xs r. %T. if null T then [] else f(x,hd T) # r(tl T)))(snd(S))" definition zip :: "'a list * 'b list => ('a*'b) list" where "zip = zipWith (%s. s)" definition unzip :: "('a*'b) list => ('a list * 'b list)" where "unzip = foldr(% (a,b)(c,d).(a#c,b#d))([],[])" consts take :: "['a list,nat] => 'a list" primrec take_0: "take xs 0 = []" take_Suc: "take xs (Suc n) = list_case [] (%x l. x # take l n) xs" consts enum :: "[nat,nat] => nat list" primrec enum_0: "enum i 0 = []" enum_Suc: "enum i (Suc j) = (if i <= j then enum i j @ [j] else [])" no_translations "[x\<leftarrow>xs . P]" == "filter (%x. P) xs" syntax (* Special syntax for list_all and filter *) "@Alls" :: "[idt, 'a list, bool] => bool" ("(2Alls _:_./ _)" 10) translations "[x\<leftarrow>xs. P]" == "CONST filter(%x. P) xs" "Alls x:xs. P" == "CONST list_all(%x. P)xs" lemma ListI: "x : list (range Leaf) ==> x : List" by (simp add: List_def) lemma ListD: "x : List ==> x : list (range Leaf)" by (simp add: List_def) lemma list_unfold: "list(A) = usum {Numb(0)} (uprod A (list(A)))" by (fast intro!: list.intros [unfolded NIL_def CONS_def] elim: list.cases [unfolded NIL_def CONS_def]) (*This justifies using list in other recursive type definitions*) lemma list_mono: "A<=B ==> list(A) <= list(B)" apply (rule subsetI) apply (erule list.induct) apply (auto intro!: list.intros) done (*Type checking -- list creates well-founded sets*) lemma list_sexp: "list(sexp) <= sexp" apply (rule subsetI) apply (erule list.induct) apply (unfold NIL_def CONS_def) apply (auto intro: sexp.intros sexp_In0I sexp_In1I) done (* A <= sexp ==> list(A) <= sexp *) lemmas list_subset_sexp = subset_trans [OF list_mono list_sexp] (*Induction for the type 'a list *) lemma list_induct: "[| P(Nil); !!x xs. P(xs) ==> P(x # xs) |] ==> P(l)" apply (unfold Nil_def Cons_def) apply (rule Rep_List_inverse [THEN subst]) (*types force good instantiation*) apply (rule Rep_List [unfolded List_def, THEN list.induct], simp) apply (erule Abs_List_inverse [unfolded List_def, THEN subst], blast) done (*** Isomorphisms ***) lemma inj_on_Abs_list: "inj_on Abs_List (list(range Leaf))" apply (rule inj_on_inverseI) apply (erule Abs_List_inverse [unfolded List_def]) done (** Distinctness of constructors **) lemma CONS_not_NIL [iff]: "CONS M N ~= NIL" by (simp add: NIL_def CONS_def) lemmas NIL_not_CONS [iff] = CONS_not_NIL [THEN not_sym] lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE, standard] lemmas NIL_neq_CONS = sym [THEN CONS_neq_NIL] lemma Cons_not_Nil [iff]: "x # xs ~= Nil" apply (unfold Nil_def Cons_def) apply (rule CONS_not_NIL [THEN inj_on_Abs_list [THEN inj_on_contraD]]) apply (simp_all add: list.intros rangeI Rep_List [unfolded List_def]) done lemmas Nil_not_Cons [iff] = Cons_not_Nil [THEN not_sym, standard] lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE, standard] lemmas Nil_neq_Cons = sym [THEN Cons_neq_Nil] (** Injectiveness of CONS and Cons **) lemma CONS_CONS_eq [iff]: "(CONS K M)=(CONS L N) = (K=L & M=N)" by (simp add: CONS_def) (*For reasoning about abstract list constructors*) declare Rep_List [THEN ListD, intro] ListI [intro] declare list.intros [intro,simp] declare Leaf_inject [dest!] lemma Cons_Cons_eq [iff]: "(x#xs=y#ys) = (x=y & xs=ys)" apply (simp add: Cons_def) apply (subst Abs_List_inject) apply (auto simp add: Rep_List_inject) done lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE, standard] lemma CONS_D: "CONS M N: list(A) ==> M: A & N: list(A)" by (induct L == "CONS M N" set: list) auto lemma sexp_CONS_D: "CONS M N: sexp ==> M: sexp & N: sexp" apply (simp add: CONS_def In1_def) apply (fast dest!: Scons_D) done (*Reasoning about constructors and their freeness*) lemma not_CONS_self: "N: list(A) ==> !M. N ~= CONS M N" apply (erule list.induct) apply simp_all done lemma not_Cons_self2: "\<forall>x. l ~= x#l" by (induct l rule: list_induct) simp_all lemma neq_Nil_conv2: "(xs ~= []) = (\<exists>y ys. xs = y#ys)" by (induct xs rule: list_induct) auto (** Conversion rules for List_case: case analysis operator **) lemma List_case_NIL [simp]: "List_case c h NIL = c" by (simp add: List_case_def NIL_def) lemma List_case_CONS [simp]: "List_case c h (CONS M N) = h M N" by (simp add: List_case_def CONS_def) (*** List_rec -- by wf recursion on pred_sexp ***) (* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not hold if pred_sexp^+ were changed to pred_sexp. *) lemma List_rec_unfold_lemma: "(%M. List_rec M c d) == wfrec (pred_sexp^+) (%g. List_case c (%x y. d x y (g y)))" by (simp add: List_rec_def) lemmas List_rec_unfold = def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl], standard] (** pred_sexp lemmas **) lemma pred_sexp_CONS_I1: "[| M: sexp; N: sexp |] ==> (M, CONS M N) : pred_sexp^+" by (simp add: CONS_def In1_def) lemma pred_sexp_CONS_I2: "[| M: sexp; N: sexp |] ==> (N, CONS M N) : pred_sexp^+" by (simp add: CONS_def In1_def) lemma pred_sexp_CONS_D: "(CONS M1 M2, N) : pred_sexp^+ ==> (M1,N) : pred_sexp^+ & (M2,N) : pred_sexp^+" apply (frule pred_sexp_subset_Sigma [THEN trancl_subset_Sigma, THEN subsetD]) apply (blast dest!: sexp_CONS_D intro: pred_sexp_CONS_I1 pred_sexp_CONS_I2 trans_trancl [THEN transD]) done (** Conversion rules for List_rec **) lemma List_rec_NIL [simp]: "List_rec NIL c h = c" apply (rule List_rec_unfold [THEN trans]) apply (simp add: List_case_NIL) done lemma List_rec_CONS [simp]: "[| M: sexp; N: sexp |] ==> List_rec (CONS M N) c h = h M N (List_rec N c h)" apply (rule List_rec_unfold [THEN trans]) apply (simp add: pred_sexp_CONS_I2) done (*** list_rec -- by List_rec ***) lemmas Rep_List_in_sexp = subsetD [OF range_Leaf_subset_sexp [THEN list_subset_sexp] Rep_List [THEN ListD]] lemma list_rec_Nil [simp]: "list_rec Nil c h = c" by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Nil_def) lemma list_rec_Cons [simp]: "list_rec (a#l) c h = h a l (list_rec l c h)" by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Cons_def Rep_List_inverse Rep_List [THEN ListD] inj_Leaf Rep_List_in_sexp) (*Type checking. Useful?*) lemma List_rec_type: "[| M: list(A); A<=sexp; c: C(NIL); !!x y r. [| x: A; y: list(A); r: C(y) |] ==> h x y r: C(CONS x y) |] ==> List_rec M c h : C(M :: 'a item)" apply (erule list.induct, simp) apply (insert list_subset_sexp) apply (subst List_rec_CONS, blast+) done (** Generalized map functionals **) lemma Rep_map_Nil [simp]: "Rep_map f Nil = NIL" by (simp add: Rep_map_def) lemma Rep_map_Cons [simp]: "Rep_map f(x#xs) = CONS(f x)(Rep_map f xs)" by (simp add: Rep_map_def) lemma Rep_map_type: "(!!x. f(x): A) ==> Rep_map f xs: list(A)" apply (simp add: Rep_map_def) apply (rule list_induct, auto) done lemma Abs_map_NIL [simp]: "Abs_map g NIL = Nil" by (simp add: Abs_map_def) lemma Abs_map_CONS [simp]: "[| M: sexp; N: sexp |] ==> Abs_map g (CONS M N) = g(M) # Abs_map g N" by (simp add: Abs_map_def) (*Eases the use of primitive recursion.*) lemma def_list_rec_NilCons: "[| !!xs. f(xs) = list_rec xs c h |] ==> f [] = c & f(x#xs) = h x xs (f xs)" by simp lemma Abs_map_inverse: "[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |] ==> Rep_map f (Abs_map g M) = M" apply (erule list.induct, simp_all) apply (insert list_subset_sexp) apply (subst Abs_map_CONS, blast) apply blast apply simp done (*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*) (** list_case **) (* setting up rewrite sets *) text{*Better to have a single theorem with a conjunctive conclusion.*} declare def_list_rec_NilCons [OF list_case_def, simp] (** list_case **) lemma expand_list_case: "P(list_case a f xs) = ((xs=[] --> P a ) & (!y ys. xs=y#ys --> P(f y ys)))" by (induct xs rule: list_induct) simp_all (**** Function definitions ****) declare def_list_rec_NilCons [OF null_def, simp] declare def_list_rec_NilCons [OF hd_def, simp] declare def_list_rec_NilCons [OF tl_def, simp] declare def_list_rec_NilCons [OF ttl_def, simp] declare def_list_rec_NilCons [OF append_def, simp] declare def_list_rec_NilCons [OF member_def, simp] declare def_list_rec_NilCons [OF map_def, simp] declare def_list_rec_NilCons [OF filter_def, simp] declare def_list_rec_NilCons [OF list_all_def, simp] (** nth **) lemma def_nat_rec_0_eta: "[| !!n. f = nat_rec c h |] ==> f(0) = c" by simp lemma def_nat_rec_Suc_eta: "[| !!n. f = nat_rec c h |] ==> f(Suc(n)) = h n (f n)" by simp declare def_nat_rec_0_eta [OF nth_def, simp] declare def_nat_rec_Suc_eta [OF nth_def, simp] (** length **) lemma length_Nil [simp]: "length([]) = 0" by (simp add: length_def) lemma length_Cons [simp]: "length(a#xs) = Suc(length(xs))" by (simp add: length_def) (** @ - append **) lemma append_assoc [simp]: "(xs@ys)@zs = xs@(ys@zs)" by (induct xs rule: list_induct) simp_all lemma append_Nil2 [simp]: "xs @ [] = xs" by (induct xs rule: list_induct) simp_all (** mem **) lemma mem_append [simp]: "x mem (xs@ys) = (x mem xs | x mem ys)" by (induct xs rule: list_induct) simp_all lemma mem_filter [simp]: "x mem [x\<leftarrow>xs. P x ] = (x mem xs & P(x))" by (induct xs rule: list_induct) simp_all (** list_all **) lemma list_all_True [simp]: "(Alls x:xs. True) = True" by (induct xs rule: list_induct) simp_all lemma list_all_conj [simp]: "list_all p (xs@ys) = ((list_all p xs) & (list_all p ys))" by (induct xs rule: list_induct) simp_all lemma list_all_mem_conv: "(Alls x:xs. P(x)) = (!x. x mem xs --> P(x))" apply (induct xs rule: list_induct) apply simp_all apply blast done lemma nat_case_dist : "(! n. P n) = (P 0 & (! n. P (Suc n)))" apply auto apply (induct_tac n) apply auto done lemma alls_P_eq_P_nth: "(Alls u:A. P u) = (!n. n < length A --> P(nth n A))" apply (induct_tac A rule: list_induct) apply simp_all apply (rule trans) apply (rule_tac [2] nat_case_dist [symmetric], simp_all) done lemma list_all_imp: "[| !x. P x --> Q x; (Alls x:xs. P(x)) |] ==> (Alls x:xs. Q(x))" by (simp add: list_all_mem_conv) (** The functional "map" and the generalized functionals **) lemma Abs_Rep_map: "(!!x. f(x): sexp) ==> Abs_map g (Rep_map f xs) = map (%t. g(f(t))) xs" apply (induct xs rule: list_induct) apply (simp_all add: Rep_map_type list_sexp [THEN subsetD]) done (** Additional mapping lemmas **) lemma map_ident [simp]: "map(%x. x)(xs) = xs" by (induct xs rule: list_induct) simp_all lemma map_append [simp]: "map f (xs@ys) = map f xs @ map f ys" by (induct xs rule: list_induct) simp_all lemma map_compose: "map(f o g)(xs) = map f (map g xs)" apply (simp add: o_def) apply (induct xs rule: list_induct) apply simp_all done lemma mem_map_aux1 [rule_format]: "x mem (map f q) --> (\<exists>y. y mem q & x = f y)" by (induct q rule: list_induct) auto lemma mem_map_aux2 [rule_format]: "(\<exists>y. y mem q & x = f y) --> x mem (map f q)" by (induct q rule: list_induct) auto lemma mem_map: "x mem (map f q) = (\<exists>y. y mem q & x = f y)" apply (rule iffI) apply (erule mem_map_aux1) apply (erule mem_map_aux2) done lemma hd_append [rule_format]: "A ~= [] --> hd(A @ B) = hd(A)" by (induct A rule: list_induct) auto lemma tl_append [rule_format]: "A ~= [] --> tl(A @ B) = tl(A) @ B" by (induct A rule: list_induct) auto (** take **) lemma take_Suc1 [simp]: "take [] (Suc x) = []" by simp lemma take_Suc2 [simp]: "take(a#xs)(Suc x) = a#take xs x" by simp (** drop **) lemma drop_0 [simp]: "drop xs 0 = xs" by (simp add: drop_def) lemma drop_Suc1 [simp]: "drop [] (Suc x) = []" apply (induct x) apply (simp_all add: drop_def) done lemma drop_Suc2 [simp]: "drop(a#xs)(Suc x) = drop xs x" by (simp add: drop_def) (** copy **) lemma copy_0 [simp]: "copy x 0 = []" by (simp add: copy_def) lemma copy_Suc [simp]: "copy x (Suc y) = x # copy x y" by (simp add: copy_def) (** fold **) lemma foldl_Nil [simp]: "foldl f a [] = a" by (simp add: foldl_def) lemma foldl_Cons [simp]: "foldl f a(x#xs) = foldl f (f a x) xs" by (simp add: foldl_def) lemma foldr_Nil [simp]: "foldr f a [] = a" by (simp add: foldr_def) lemma foldr_Cons [simp]: "foldr f z(x#xs) = f x (foldr f z xs)" by (simp add: foldr_def) (** flat **) lemma flat_Nil [simp]: "flat [] = []" by (simp add: flat_def) lemma flat_Cons [simp]: "flat (x # xs) = x @ flat xs" by (simp add: flat_def) (** rev **) lemma rev_Nil [simp]: "rev [] = []" by (simp add: rev_def) lemma rev_Cons [simp]: "rev (x # xs) = rev xs @ [x]" by (simp add: rev_def) (** zip **) lemma zipWith_Cons_Cons [simp]: "zipWith f (a#as,b#bs) = f(a,b) # zipWith f (as,bs)" by (simp add: zipWith_def) lemma zipWith_Nil_Nil [simp]: "zipWith f ([],[]) = []" by (simp add: zipWith_def) lemma zipWith_Cons_Nil [simp]: "zipWith f (x,[]) = []" by (induct x rule: list_induct) (simp_all add: zipWith_def) lemma zipWith_Nil_Cons [simp]: "zipWith f ([],x) = []" by (simp add: zipWith_def) lemma unzip_Nil [simp]: "unzip [] = ([],[])" by (simp add: unzip_def) (** SOME LIST THEOREMS **) (* SQUIGGOL LEMMAS *) lemma map_compose_ext: "map(f o g) = ((map f) o (map g))" apply (simp add: o_def) apply (rule ext) apply (simp add: map_compose [symmetric] o_def) done lemma map_flat: "map f (flat S) = flat(map (map f) S)" by (induct S rule: list_induct) simp_all lemma list_all_map_eq: "(Alls u:xs. f(u) = g(u)) --> map f xs = map g xs" by (induct xs rule: list_induct) simp_all lemma filter_map_d: "filter p (map f xs) = map f (filter(p o f)(xs))" by (induct xs rule: list_induct) simp_all lemma filter_compose: "filter p (filter q xs) = filter(%x. p x & q x) xs" by (induct xs rule: list_induct) simp_all (* "filter(p, filter(q,xs)) = filter(q, filter(p,xs))", "filter(p, filter(p,xs)) = filter(p,xs)" BIRD's thms.*) lemma filter_append [rule_format, simp]: "\<forall>B. filter p (A @ B) = (filter p A @ filter p B)" by (induct A rule: list_induct) simp_all (* inits(xs) == map(fst,splits(xs)), splits([]) = [] splits(a # xs) = <[],xs> @ map(%x. <a # fst(x),snd(x)>, splits(xs)) (x @ y = z) = <x,y> mem splits(z) x mem xs & y mem ys = <x,y> mem diag(xs,ys) *) lemma length_append: "length(xs@ys) = length(xs)+length(ys)" by (induct xs rule: list_induct) simp_all lemma length_map: "length(map f xs) = length(xs)" by (induct xs rule: list_induct) simp_all lemma take_Nil [simp]: "take [] n = []" by (induct n) simp_all lemma take_take_eq [simp]: "\<forall>n. take (take xs n) n = take xs n" apply (induct xs rule: list_induct) apply simp_all apply (rule allI) apply (induct_tac n) apply auto done lemma take_take_Suc_eq1 [rule_format]: "\<forall>n. take (take xs(Suc(n+m))) n = take xs n" apply (induct_tac xs rule: list_induct) apply simp_all apply (rule allI) apply (induct_tac n) apply auto done declare take_Suc [simp del] lemma take_take_1: "take (take xs (n+m)) n = take xs n" apply (induct m) apply (simp_all add: take_take_Suc_eq1) done lemma take_take_Suc_eq2 [rule_format]: "\<forall>n. take (take xs n)(Suc(n+m)) = take xs n" apply (induct_tac xs rule: list_induct) apply simp_all apply (rule allI) apply (induct_tac n) apply auto done lemma take_take_2: "take(take xs n)(n+m) = take xs n" apply (induct m) apply (simp_all add: take_take_Suc_eq2) done (* length(take(xs,n)) = min(n, length(xs)) *) (* length(drop(xs,n)) = length(xs) - n *) lemma drop_Nil [simp]: "drop [] n = []" by (induct n) auto lemma drop_drop [rule_format]: "\<forall>xs. drop (drop xs m) n = drop xs(m+n)" apply (induct_tac m) apply auto apply (induct_tac xs rule: list_induct) apply auto done lemma take_drop [rule_format]: "\<forall>xs. (take xs n) @ (drop xs n) = xs" apply (induct_tac n) apply auto apply (induct_tac xs rule: list_induct) apply auto done lemma copy_copy: "copy x n @ copy x m = copy x (n+m)" by (induct n) auto lemma length_copy: "length(copy x n) = n" by (induct n) auto lemma length_take [rule_format, simp]: "\<forall>xs. length(take xs n) = min (length xs) n" apply (induct n) apply auto apply (induct_tac xs rule: list_induct) apply auto done lemma length_take_drop: "length(take A k) + length(drop A k) = length(A)" by (simp only: length_append [symmetric] take_drop) lemma take_append [rule_format]: "\<forall>A. length(A) = n --> take(A@B) n = A" apply (induct n) apply (rule allI) apply (rule_tac [2] allI) apply (induct_tac A rule: list_induct) apply (induct_tac [3] A rule: list_induct, simp_all) done lemma take_append2 [rule_format]: "\<forall>A. length(A) = n --> take(A@B) (n+k) = A @ take B k" apply (induct n) apply (rule allI) apply (rule_tac [2] allI) apply (induct_tac A rule: list_induct) apply (induct_tac [3] A rule: list_induct, simp_all) done lemma take_map [rule_format]: "\<forall>n. take (map f A) n = map f (take A n)" apply (induct A rule: list_induct) apply simp_all apply (rule allI) apply (induct_tac n) apply simp_all done lemma drop_append [rule_format]: "\<forall>A. length(A) = n --> drop(A@B)n = B" apply (induct n) apply (rule allI) apply (rule_tac [2] allI) apply (induct_tac A rule: list_induct) apply (induct_tac [3] A rule: list_induct) apply simp_all done lemma drop_append2 [rule_format]: "\<forall>A. length(A) = n --> drop(A@B)(n+k) = drop B k" apply (induct n) apply (rule allI) apply (rule_tac [2] allI) apply (induct_tac A rule: list_induct) apply (induct_tac [3] A rule: list_induct) apply simp_all done lemma drop_all [rule_format]: "\<forall>A. length(A) = n --> drop A n = []" apply (induct n) apply (rule allI) apply (rule_tac [2] allI) apply (induct_tac A rule: list_induct) apply (induct_tac [3] A rule: list_induct) apply auto done lemma drop_map [rule_format]: "\<forall>n. drop (map f A) n = map f (drop A n)" apply (induct A rule: list_induct) apply simp_all apply (rule allI) apply (induct_tac n) apply simp_all done lemma take_all [rule_format]: "\<forall>A. length(A) = n --> take A n = A" apply (induct n) apply (rule allI) apply (rule_tac [2] allI) apply (induct_tac A rule: list_induct) apply (induct_tac [3] A rule: list_induct) apply auto done lemma foldl_single: "foldl f a [b] = f a b" by simp_all lemma foldl_append [simp]: "\<And>a. foldl f a (A @ B) = foldl f (foldl f a A) B" by (induct A rule: list_induct) simp_all lemma foldl_map: "\<And>e. foldl f e (map g S) = foldl (%x y. f x (g y)) e S" by (induct S rule: list_induct) simp_all lemma foldl_neutr_distr [rule_format]: assumes r_neutr: "\<forall>a. f a e = a" and r_neutl: "\<forall>a. f e a = a" and assoc: "\<forall>a b c. f a (f b c) = f(f a b) c" shows "\<forall>y. f y (foldl f e A) = foldl f y A" apply (induct A rule: list_induct) apply (simp_all add: r_neutr r_neutl, clarify) apply (erule all_dupE) apply (rule trans) prefer 2 apply assumption apply (simp (no_asm_use) add: assoc [THEN spec, THEN spec, THEN spec, THEN sym]) apply simp done lemma foldl_append_sym: "[| !a. f a e = a; !a. f e a = a; !a b c. f a (f b c) = f(f a b) c |] ==> foldl f e (A @ B) = f(foldl f e A)(foldl f e B)" apply (rule trans) apply (rule foldl_append) apply (rule sym) apply (rule foldl_neutr_distr, auto) done lemma foldr_append [rule_format, simp]: "\<forall>a. foldr f a (A @ B) = foldr f (foldr f a B) A" by (induct A rule: list_induct) simp_all lemma foldr_map: "\<And>e. foldr f e (map g S) = foldr (f o g) e S" by (induct S rule: list_induct) (simp_all add: o_def) lemma foldr_Un_eq_UN: "foldr op Un {} S = (UN X: {t. t mem S}.X)" by (induct S rule: list_induct) auto lemma foldr_neutr_distr: "[| !a. f e a = a; !a b c. f a (f b c) = f(f a b) c |] ==> foldr f y S = f (foldr f e S) y" by (induct S rule: list_induct) auto lemma foldr_append2: "[| !a. f e a = a; !a b c. f a (f b c) = f(f a b) c |] ==> foldr f e (A @ B) = f (foldr f e A) (foldr f e B)" apply auto apply (rule foldr_neutr_distr) apply auto done lemma foldr_flat: "[| !a. f e a = a; !a b c. f a (f b c) = f(f a b) c |] ==> foldr f e (flat S) = (foldr f e)(map (foldr f e) S)" apply (induct S rule: list_induct) apply (simp_all del: foldr_append add: foldr_append2) done lemma list_all_map: "(Alls x:map f xs .P(x)) = (Alls x:xs.(P o f)(x))" by (induct xs rule: list_induct) auto lemma list_all_and: "(Alls x:xs. P(x)&Q(x)) = ((Alls x:xs. P(x))&(Alls x:xs. Q(x)))" by (induct xs rule: list_induct) auto lemma nth_map [rule_format]: "\<forall>i. i < length(A) --> nth i (map f A) = f(nth i A)" apply (induct A rule: list_induct) apply simp_all apply (rule allI) apply (induct_tac i) apply auto done lemma nth_app_cancel_right [rule_format]: "\<forall>i. i < length(A) --> nth i(A@B) = nth i A" apply (induct A rule: list_induct) apply simp_all apply (rule allI) apply (induct_tac i) apply simp_all done lemma nth_app_cancel_left [rule_format]: "\<forall>n. n = length(A) --> nth(n+i)(A@B) = nth i B" by (induct A rule: list_induct) simp_all (** flat **) lemma flat_append [simp]: "flat(xs@ys) = flat(xs) @ flat(ys)" by (induct xs rule: list_induct) auto lemma filter_flat: "filter p (flat S) = flat(map (filter p) S)" by (induct S rule: list_induct) auto (** rev **) lemma rev_append [simp]: "rev(xs@ys) = rev(ys) @ rev(xs)" by (induct xs rule: list_induct) auto lemma rev_rev_ident [simp]: "rev(rev l) = l" by (induct l rule: list_induct) auto lemma rev_flat: "rev(flat ls) = flat (map rev (rev ls))" by (induct ls rule: list_induct) auto lemma rev_map_distrib: "rev(map f l) = map f (rev l)" by (induct l rule: list_induct) auto lemma foldl_rev: "foldl f b (rev l) = foldr (%x y. f y x) b l" by (induct l rule: list_induct) auto lemma foldr_rev: "foldr f b (rev l) = foldl (%x y. f y x) b l" apply (rule sym) apply (rule trans) apply (rule_tac [2] foldl_rev) apply simp done end