moved management of auxiliary theory source files to Thy_Load -- as theory data instead of accidental loader state;
theory loader: reduced warnings -- thy database can be bypassed in certain situations;
Proof/Local_Theory.propagate_ml_env;
ML use function: propagate ML environment as well;
pervasive type generic_theory;
(*  Title:      HOL/Tools/SMT/z3_interface.ML
    Author:     Sascha Boehme, TU Muenchen
Interface to Z3 based on a relaxed version of SMT-LIB.
*)
signature Z3_INTERFACE =
sig
  type builtin_fun = string * typ -> term list -> (string * term list) option
  val add_builtin_funs: builtin_fun -> Context.generic -> Context.generic
  val interface: SMT_Solver.interface
  datatype sym = Sym of string * sym list
  type mk_builtins = {
    mk_builtin_typ: sym -> typ option,
    mk_builtin_num: theory -> int -> typ -> cterm option,
    mk_builtin_fun: theory -> sym -> cterm list -> cterm option }
  val add_mk_builtins: mk_builtins -> Context.generic -> Context.generic
  val mk_builtin_typ: Proof.context -> sym -> typ option
  val mk_builtin_num: Proof.context -> int -> typ -> cterm option
  val mk_builtin_fun: Proof.context -> sym -> cterm list -> cterm option
  val is_builtin_theory_term: Proof.context -> term -> bool
  val mk_inst_pair: (ctyp -> 'a) -> cterm -> 'a * cterm
  val destT1: ctyp -> ctyp
  val destT2: ctyp -> ctyp
  val instT': cterm -> ctyp * cterm -> cterm
end
structure Z3_Interface: Z3_INTERFACE =
struct
(** Z3-specific builtins **)
type builtin_fun = string * typ -> term list -> (string * term list) option
fun fst_int_ord ((s1, _), (s2, _)) = int_ord (s1, s2)
structure Builtins = Generic_Data
(
  type T = (int * builtin_fun) list
  val empty = []
  val extend = I
  fun merge (bs1, bs2) = OrdList.union fst_int_ord bs2 bs1
)
fun add_builtin_funs b =
  Builtins.map (OrdList.insert fst_int_ord (serial (), b))
fun get_builtin_funs ctxt c ts =
  let
    fun chained [] = NONE
      | chained (b :: bs) = (case b c ts of SOME x => SOME x | _ => chained bs)
  in chained (map snd (Builtins.get (Context.Proof ctxt))) end
fun z3_builtin_fun builtin_fun ctxt c ts =
  (case builtin_fun ctxt c ts of
    SOME x => SOME x
  | _ => get_builtin_funs ctxt c ts)
(** interface **)
local
  val {extra_norm, translate} = SMTLIB_Interface.interface
  val {prefixes, strict, header, builtins, serialize} = translate
  val {is_builtin_pred, ...}= the strict
  val {builtin_typ, builtin_num, builtin_fun} = builtins
  fun is_int_div_mod @{term "op div :: int => _"} = true
    | is_int_div_mod @{term "op mod :: int => _"} = true
    | is_int_div_mod _ = false
  fun add_div_mod thms =
    if exists (Term.exists_subterm is_int_div_mod o Thm.prop_of) thms
    then [@{thm div_by_z3div}, @{thm mod_by_z3mod}] @ thms
    else thms
  fun extra_norm' thms = extra_norm (add_div_mod thms)
  fun z3_builtin_fun' _ (@{const_name z3div}, _) ts = SOME ("div", ts)
    | z3_builtin_fun' _ (@{const_name z3mod}, _) ts = SOME ("mod", ts)
    | z3_builtin_fun' ctxt c ts = z3_builtin_fun builtin_fun ctxt c ts
  val as_propT = (fn @{typ bool} => @{typ prop} | T => T)
in
fun is_builtin_num ctxt (T, i) = is_some (builtin_num ctxt T i)
fun is_builtin_fun ctxt (c as (n, T)) ts =
  is_some (z3_builtin_fun' ctxt c ts) orelse 
  is_builtin_pred ctxt (n, Term.strip_type T ||> as_propT |> (op --->))
val interface = {
  extra_norm = extra_norm',
  translate = {
    prefixes = prefixes,
    strict = strict,
    header = header,
    builtins = {
      builtin_typ = builtin_typ,
      builtin_num = builtin_num,
      builtin_fun = z3_builtin_fun'},
    serialize = serialize}}
end
(** constructors **)
datatype sym = Sym of string * sym list
(* additional constructors *)
type mk_builtins = {
  mk_builtin_typ: sym -> typ option,
  mk_builtin_num: theory -> int -> typ -> cterm option,
  mk_builtin_fun: theory -> sym -> cterm list -> cterm option }
fun chained _ [] = NONE
  | chained f (b :: bs) = (case f b of SOME y => SOME y | NONE => chained f bs)
fun chained_mk_builtin_typ bs sym =
  chained (fn {mk_builtin_typ=mk, ...} : mk_builtins => mk sym) bs
fun chained_mk_builtin_num ctxt bs i T =
  let val thy = ProofContext.theory_of ctxt
  in chained (fn {mk_builtin_num=mk, ...} : mk_builtins => mk thy i T) bs end
fun chained_mk_builtin_fun ctxt bs s cts =
  let val thy = ProofContext.theory_of ctxt
  in chained (fn {mk_builtin_fun=mk, ...} : mk_builtins => mk thy s cts) bs end
structure Mk_Builtins = Generic_Data
(
  type T = (int * mk_builtins) list
  val empty = []
  val extend = I
  fun merge (bs1, bs2) = OrdList.union fst_int_ord bs2 bs1
)
fun add_mk_builtins mk =
  Mk_Builtins.map (OrdList.insert fst_int_ord (serial (), mk))
fun get_mk_builtins ctxt = map snd (Mk_Builtins.get (Context.Proof ctxt))
(* basic and additional constructors *)
fun mk_builtin_typ _ (Sym ("bool", _)) = SOME @{typ bool}
  | mk_builtin_typ _ (Sym ("int", _)) = SOME @{typ int}
  | mk_builtin_typ ctxt sym = chained_mk_builtin_typ (get_mk_builtins ctxt) sym
fun mk_builtin_num _ i @{typ int} = SOME (Numeral.mk_cnumber @{ctyp int} i)
  | mk_builtin_num ctxt i T =
      chained_mk_builtin_num ctxt (get_mk_builtins ctxt) i T
fun instTs cUs (cTs, ct) = Thm.instantiate_cterm (cTs ~~ cUs, []) ct
fun instT cU (cT, ct) = instTs [cU] ([cT], ct)
fun instT' ct = instT (Thm.ctyp_of_term ct)
fun mk_inst_pair destT cpat = (destT (Thm.ctyp_of_term cpat), cpat)
val destT1 = hd o Thm.dest_ctyp
val destT2 = hd o tl o Thm.dest_ctyp
val mk_true = @{cterm "~False"}
val mk_false = @{cterm False}
val mk_not = Thm.capply @{cterm Not}
val mk_implies = Thm.mk_binop @{cterm "op -->"}
val mk_iff = Thm.mk_binop @{cterm "op = :: bool => _"}
fun mk_nary _ cu [] = cu
  | mk_nary ct _ cts = uncurry (fold_rev (Thm.mk_binop ct)) (split_last cts)
val eq = mk_inst_pair destT1 @{cpat "op ="}
fun mk_eq ct cu = Thm.mk_binop (instT' ct eq) ct cu
val if_term = mk_inst_pair (destT1 o destT2) @{cpat If}
fun mk_if cc ct cu = Thm.mk_binop (Thm.capply (instT' ct if_term) cc) ct cu
val nil_term = mk_inst_pair destT1 @{cpat Nil}
val cons_term = mk_inst_pair destT1 @{cpat Cons}
fun mk_list cT cts =
  fold_rev (Thm.mk_binop (instT cT cons_term)) cts (instT cT nil_term)
val distinct = mk_inst_pair (destT1 o destT1) @{cpat distinct}
fun mk_distinct [] = mk_true
  | mk_distinct (cts as (ct :: _)) =
      Thm.capply (instT' ct distinct) (mk_list (Thm.ctyp_of_term ct) cts)
val access = mk_inst_pair (Thm.dest_ctyp o destT1) @{cpat fun_app}
fun mk_access array index =
  let val cTs = Thm.dest_ctyp (Thm.ctyp_of_term array)
  in Thm.mk_binop (instTs cTs access) array index end
val update = mk_inst_pair (Thm.dest_ctyp o destT1) @{cpat fun_upd}
fun mk_update array index value =
  let val cTs = Thm.dest_ctyp (Thm.ctyp_of_term array)
  in Thm.capply (Thm.mk_binop (instTs cTs update) array index) value end
val mk_uminus = Thm.capply @{cterm "uminus :: int => _"}
val mk_add = Thm.mk_binop @{cterm "op + :: int => _"}
val mk_sub = Thm.mk_binop @{cterm "op - :: int => _"}
val mk_mul = Thm.mk_binop @{cterm "op * :: int => _"}
val mk_div = Thm.mk_binop @{cterm "z3div :: int => _"}
val mk_mod = Thm.mk_binop @{cterm "z3mod :: int => _"}
val mk_lt = Thm.mk_binop @{cterm "op < :: int => _"}
val mk_le = Thm.mk_binop @{cterm "op <= :: int => _"}
fun mk_builtin_fun ctxt sym cts =
  (case (sym, cts) of
    (Sym ("true", _), []) => SOME mk_true
  | (Sym ("false", _), []) => SOME mk_false
  | (Sym ("not", _), [ct]) => SOME (mk_not ct)
  | (Sym ("and", _), _) => SOME (mk_nary @{cterm "op &"} mk_true cts)
  | (Sym ("or", _), _) => SOME (mk_nary @{cterm "op |"} mk_false cts)
  | (Sym ("implies", _), [ct, cu]) => SOME (mk_implies ct cu)
  | (Sym ("iff", _), [ct, cu]) => SOME (mk_iff ct cu)
  | (Sym ("~", _), [ct, cu]) => SOME (mk_iff ct cu)
  | (Sym ("xor", _), [ct, cu]) => SOME (mk_not (mk_iff ct cu))
  | (Sym ("ite", _), [ct1, ct2, ct3]) => SOME (mk_if ct1 ct2 ct3)
  | (Sym ("=", _), [ct, cu]) => SOME (mk_eq ct cu)
  | (Sym ("distinct", _), _) => SOME (mk_distinct cts)
  | (Sym ("select", _), [ca, ck]) => SOME (mk_access ca ck)
  | (Sym ("store", _), [ca, ck, cv]) => SOME (mk_update ca ck cv)
  | _ =>
    (case (sym, try (#T o Thm.rep_cterm o hd) cts, cts) of
      (Sym ("+", _), SOME @{typ int}, [ct, cu]) => SOME (mk_add ct cu)
    | (Sym ("-", _), SOME @{typ int}, [ct]) => SOME (mk_uminus ct)
    | (Sym ("-", _), SOME @{typ int}, [ct, cu]) => SOME (mk_sub ct cu)
    | (Sym ("*", _), SOME @{typ int}, [ct, cu]) => SOME (mk_mul ct cu)
    | (Sym ("div", _), SOME @{typ int}, [ct, cu]) => SOME (mk_div ct cu)
    | (Sym ("mod", _), SOME @{typ int}, [ct, cu]) => SOME (mk_mod ct cu)
    | (Sym ("<", _), SOME @{typ int}, [ct, cu]) => SOME (mk_lt ct cu)
    | (Sym ("<=", _), SOME @{typ int}, [ct, cu]) => SOME (mk_le ct cu)
    | (Sym (">", _), SOME @{typ int}, [ct, cu]) => SOME (mk_lt cu ct)
    | (Sym (">=", _), SOME @{typ int}, [ct, cu]) => SOME (mk_le cu ct)
    | _ => chained_mk_builtin_fun ctxt (get_mk_builtins ctxt) sym cts))
(** abstraction **)
fun is_builtin_theory_term ctxt t =
  (case try HOLogic.dest_number t of
    SOME n => is_builtin_num ctxt n
  | NONE =>
      (case Term.strip_comb t of
        (Const c, ts) => is_builtin_fun ctxt c ts
      | _ => false))
end