(* Title: Pure/Syntax/parser.ML
Author: Carsten Clasohm, Sonia Mahjoub, and Markus Wenzel, TU Muenchen
General context-free parser for the inner syntax of terms, types, etc.
*)
signature PARSER =
sig
type gram
val empty_gram: gram
val extend_gram: Syn_Ext.xprod list -> gram -> gram
val make_gram: Syn_Ext.xprod list -> gram
val merge_gram: gram * gram -> gram
val pretty_gram: gram -> Pretty.T list
datatype parsetree =
Node of string * parsetree list |
Tip of Lexicon.token
val parse: Proof.context -> gram -> string -> Lexicon.token list -> parsetree list
val guess_infix_lr: gram -> string -> (string * bool * bool * int) option
val branching_level: int Unsynchronized.ref
end;
structure Parser: PARSER =
struct
(** datatype gram **)
(*production for the NTs are stored in a vector
so we can identify NTs by their index*)
type nt_tag = int;
datatype symb =
Terminal of Lexicon.token
| Nonterminal of nt_tag * int; (*(tag, precedence)*)
type nt_gram =
((nt_tag list * Lexicon.token list) *
(Lexicon.token option * (symb list * string * int) list) list);
(*(([dependent_nts], [start_tokens]), [(start_token, [(rhs, name, prio)])])*)
(*depent_nts is a list of all NTs whose lookahead depends on this NT's lookahead*)
datatype gram =
Gram of
{nt_count: int,
prod_count: int,
tags: nt_tag Symtab.table,
chains: (nt_tag * nt_tag list) list, (*[(to, [from])]*)
lambdas: nt_tag list,
prods: nt_gram Vector.vector};
(*"tags" is used to map NT names (i.e. strings) to tags;
chain productions are not stored as normal productions
but instead as an entry in "chains";
lambda productions are stored as normal productions
and also as an entry in "lambdas"*)
(*productions for which no starting token is
known yet are associated with this token*)
val unknown_start = Lexicon.eof;
(*get all NTs that are connected with a list of NTs*)
fun connected_with _ ([]: nt_tag list) relatives = relatives
| connected_with chains (root :: roots) relatives =
let val branches = subtract (op =) relatives (these (AList.lookup (op =) chains root));
in connected_with chains (branches @ roots) (branches @ relatives) end;
(*convert productions to grammar;
N.B. that the chains parameter has the form [(from, [to])];
prod_count is of type "int option" and is only updated if it is <> NONE*)
fun add_prods _ chains lambdas prod_count [] = (chains, lambdas, prod_count)
| add_prods prods chains lambdas prod_count ((lhs, new_prod as (rhs, name, pri)) :: ps) =
let
val chain_from =
(case (pri, rhs) of
(~1, [Nonterminal (id, ~1)]) => SOME id
| _ => NONE);
(*store chain if it does not already exist*)
val (new_chain, chains') =
(case chain_from of
NONE => (NONE, chains)
| SOME from =>
let val old_tos = these (AList.lookup (op =) chains from) in
if member (op =) old_tos lhs then (NONE, chains)
else (SOME from, AList.update (op =) (from, insert (op =) lhs old_tos) chains)
end);
(*propagate new chain in lookahead and lambda lists;
added_starts is used later to associate existing
productions with new starting tokens*)
val (added_starts, lambdas') =
if is_none new_chain then ([], lambdas)
else
let (*lookahead of chain's source*)
val ((from_nts, from_tks), _) = Array.sub (prods, the new_chain);
(*copy from's lookahead to chain's destinations*)
fun copy_lookahead [] added = added
| copy_lookahead (to :: tos) added =
let
val ((to_nts, to_tks), ps) = Array.sub (prods, to);
val new_tks = subtract (op =) to_tks from_tks; (*added lookahead tokens*)
val _ = Array.update (prods, to, ((to_nts, to_tks @ new_tks), ps));
in
copy_lookahead tos (if null new_tks then added else (to, new_tks) :: added)
end;
val tos = connected_with chains' [lhs] [lhs];
in
(copy_lookahead tos [],
union (op =) (if member (op =) lambdas lhs then tos else []) lambdas)
end;
(*test if new production can produce lambda
(rhs must either be empty or only consist of lambda NTs)*)
val (new_lambda, lambdas') =
if forall
(fn Nonterminal (id, _) => member (op =) lambdas' id
| Terminal _ => false) rhs
then (true, union (op =) lambdas' (connected_with chains' [lhs] [lhs]))
else (false, lambdas');
(*list optional terminal and all nonterminals on which the lookahead
of a production depends*)
fun lookahead_dependency _ [] nts = (NONE, nts)
| lookahead_dependency _ ((Terminal tk) :: _) nts = (SOME tk, nts)
| lookahead_dependency lambdas ((Nonterminal (nt, _)) :: symbs) nts =
if member (op =) lambdas nt then
lookahead_dependency lambdas symbs (nt :: nts)
else (NONE, nt :: nts);
(*get all known starting tokens for a nonterminal*)
fun starts_for_nt nt = snd (fst (Array.sub (prods, nt)));
val token_union = uncurry (union Lexicon.matching_tokens);
(*update prods, lookaheads, and lambdas according to new lambda NTs*)
val (added_starts', lambdas') =
let
(*propagate added lambda NT*)
fun propagate_lambda [] added_starts lambdas= (added_starts, lambdas)
| propagate_lambda (l :: ls) added_starts lambdas =
let
(*get lookahead for lambda NT*)
val ((dependent, l_starts), _) = Array.sub (prods, l);
(*check productions whose lookahead may depend on lambda NT*)
fun examine_prods [] add_lambda nt_dependencies added_tks nt_prods =
(add_lambda, nt_dependencies, added_tks, nt_prods)
| examine_prods ((p as (rhs, _, _)) :: ps) add_lambda
nt_dependencies added_tks nt_prods =
let val (tk, nts) = lookahead_dependency lambdas rhs [] in
if member (op =) nts l then (*update production's lookahead*)
let
val new_lambda = is_none tk andalso subset (op =) (nts, lambdas);
val new_tks = subtract (op =) l_starts
((if is_some tk then [the tk] else []) @
Library.foldl token_union ([], map starts_for_nt nts));
val added_tks' = token_union (new_tks, added_tks);
val nt_dependencies' = union (op =) nts nt_dependencies;
(*associate production with new starting tokens*)
fun copy ([]: Lexicon.token option list) nt_prods = nt_prods
| copy (tk :: tks) nt_prods =
let
val old_prods = these (AList.lookup (op =) nt_prods tk);
val prods' = p :: old_prods;
in
nt_prods
|> AList.update (op =) (tk, prods')
|> copy tks
end;
val nt_prods' =
let val new_opt_tks = map SOME new_tks in
copy
((if new_lambda then [NONE] else []) @ new_opt_tks) nt_prods
end;
in
examine_prods ps (add_lambda orelse new_lambda)
nt_dependencies' added_tks' nt_prods'
end
else (*skip production*)
examine_prods ps add_lambda nt_dependencies added_tks nt_prods
end;
(*check each NT whose lookahead depends on new lambda NT*)
fun process_nts [] added_lambdas added_starts =
(added_lambdas, added_starts)
| process_nts (nt :: nts) added_lambdas added_starts =
let
val (lookahead as (old_nts, old_tks), nt_prods) = Array.sub (prods, nt);
(*existing productions whose lookahead may depend on l*)
val tk_prods =
these
(AList.lookup (op =) nt_prods
(SOME (hd l_starts handle Empty => unknown_start)));
(*add_lambda is true if an existing production of the nt
produces lambda due to the new lambda NT l*)
val (add_lambda, nt_dependencies, added_tks, nt_prods') =
examine_prods tk_prods false [] [] nt_prods;
val added_nts = subtract (op =) old_nts nt_dependencies;
val added_lambdas' =
if add_lambda then nt :: added_lambdas
else added_lambdas;
val _ =
Array.update
(prods, nt, ((added_nts @ old_nts, old_tks @ added_tks), nt_prods'));
(*N.B. that because the tks component
is used to access existing
productions we have to add new
tokens at the _end_ of the list*)
in
if null added_tks then
process_nts nts added_lambdas' added_starts
else
process_nts nts added_lambdas' ((nt, added_tks) :: added_starts)
end;
val (added_lambdas, added_starts') = process_nts dependent [] added_starts;
val added_lambdas' = subtract (op =) lambdas added_lambdas;
in
propagate_lambda (ls @ added_lambdas') added_starts' (added_lambdas' @ lambdas)
end;
in propagate_lambda (subtract (op =) lambdas lambdas') added_starts lambdas' end;
(*insert production into grammar*)
val (added_starts', prod_count') =
if is_some chain_from
then (added_starts', prod_count) (*don't store chain production*)
else
let
(*lookahead tokens of new production and on which
NTs lookahead depends*)
val (start_tk, start_nts) = lookahead_dependency lambdas' rhs [];
val start_tks =
Library.foldl token_union
(if is_some start_tk then [the start_tk] else [],
map starts_for_nt start_nts);
val opt_starts =
(if new_lambda then [NONE]
else if null start_tks then [SOME unknown_start]
else []) @ map SOME start_tks;
(*add lhs NT to list of dependent NTs in lookahead*)
fun add_nts [] = ()
| add_nts (nt :: nts) =
let val ((old_nts, old_tks), ps) = Array.sub (prods, nt) in
if member (op =) old_nts lhs then ()
else Array.update (prods, nt, ((lhs :: old_nts, old_tks), ps))
end;
(*add new start tokens to chained NTs' lookahead list;
also store new production for lhs NT*)
fun add_tks [] added prod_count = (added, prod_count)
| add_tks (nt :: nts) added prod_count =
let
val ((old_nts, old_tks), nt_prods) = Array.sub (prods, nt);
val new_tks = subtract Lexicon.matching_tokens old_tks start_tks;
(*store new production*)
fun store [] prods is_new =
(prods,
if is_some prod_count andalso is_new then
Option.map (fn x => x + 1) prod_count
else prod_count, is_new)
| store (tk :: tks) prods is_new =
let
val tk_prods = these (AList.lookup (op =) prods tk);
(*if prod_count = NONE then we can assume that
grammar does not contain new production already*)
val (tk_prods', is_new') =
if is_some prod_count then
if member (op =) tk_prods new_prod then (tk_prods, false)
else (new_prod :: tk_prods, true)
else (new_prod :: tk_prods, true);
val prods' = prods
|> is_new' ? AList.update (op =) (tk: Lexicon.token option, tk_prods');
in store tks prods' (is_new orelse is_new') end;
val (nt_prods', prod_count', changed) =
if nt = lhs
then store opt_starts nt_prods false
else (nt_prods, prod_count, false);
val _ =
if not changed andalso null new_tks then ()
else Array.update (prods, nt, ((old_nts, old_tks @ new_tks), nt_prods'));
in
add_tks nts
(if null new_tks then added else (nt, new_tks) :: added) prod_count'
end;
val _ = add_nts start_nts;
in
add_tks (connected_with chains' [lhs] [lhs]) [] prod_count
end;
(*associate productions with new lookaheads*)
val _ =
let
(*propagate added start tokens*)
fun add_starts [] = ()
| add_starts ((changed_nt, new_tks) :: starts) =
let
(*token under which old productions which
depend on changed_nt could be stored*)
val key =
(case find_first (not o member (op =) new_tks) (starts_for_nt changed_nt) of
NONE => SOME unknown_start
| t => t);
(*copy productions whose lookahead depends on changed_nt;
if key = SOME unknown_start then tk_prods is used to hold
the productions not copied*)
fun update_prods [] result = result
| update_prods ((p as (rhs, _: string, _: nt_tag)) :: ps)
(tk_prods, nt_prods) =
let
(*lookahead dependency for production*)
val (tk, depends) = lookahead_dependency lambdas' rhs [];
(*test if this production has to be copied*)
val update = member (op =) depends changed_nt;
(*test if production could already be associated with
a member of new_tks*)
val lambda =
length depends > 1 orelse
not (null depends) andalso is_some tk
andalso member (op =) new_tks (the tk);
(*associate production with new starting tokens*)
fun copy ([]: Lexicon.token list) nt_prods = nt_prods
| copy (tk :: tks) nt_prods =
let
val tk_prods = these (AList.lookup (op =) nt_prods (SOME tk));
val tk_prods' =
if not lambda then p :: tk_prods
else insert (op =) p tk_prods;
(*if production depends on lambda NT we
have to look for duplicates*)
in
nt_prods
|> AList.update (op =) (SOME tk, tk_prods')
|> copy tks
end;
val result =
if update then (tk_prods, copy new_tks nt_prods)
else if key = SOME unknown_start then (p :: tk_prods, nt_prods)
else (tk_prods, nt_prods);
in update_prods ps result end;
(*copy existing productions for new starting tokens*)
fun process_nts [] added = added
| process_nts (nt :: nts) added =
let
val (lookahead as (old_nts, old_tks), nt_prods) = Array.sub (prods, nt);
val tk_prods = these (AList.lookup (op =) nt_prods key);
(*associate productions with new lookahead tokens*)
val (tk_prods', nt_prods') = update_prods tk_prods ([], nt_prods);
val nt_prods' =
nt_prods'
|> (key = SOME unknown_start) ? AList.update (op =) (key, tk_prods');
val added_tks = subtract Lexicon.matching_tokens old_tks new_tks;
in
if null added_tks then
(Array.update (prods, nt, (lookahead, nt_prods'));
process_nts nts added)
else
(Array.update (prods, nt, ((old_nts, added_tks @ old_tks), nt_prods'));
process_nts nts ((nt, added_tks) :: added))
end;
val ((dependent, _), _) = Array.sub (prods, changed_nt);
in add_starts (starts @ process_nts dependent []) end;
in add_starts added_starts' end;
in add_prods prods chains' lambdas' prod_count ps end;
(* pretty_gram *)
fun pretty_gram (Gram {tags, prods, chains, ...}) =
let
fun pretty_name name = [Pretty.str (name ^ " =")];
val nt_name = the o Inttab.lookup (Inttab.make (map swap (Symtab.dest tags)));
fun pretty_symb (Terminal (Lexicon.Token (Lexicon.Literal, s, _))) = Pretty.quote (Pretty.str s)
| pretty_symb (Terminal tok) = Pretty.str (Lexicon.str_of_token tok)
| pretty_symb (Nonterminal (tag, p)) =
Pretty.str (nt_name tag ^ "[" ^ signed_string_of_int p ^ "]");
fun pretty_const "" = []
| pretty_const c = [Pretty.str ("=> " ^ quote c)];
fun pretty_pri p = [Pretty.str ("(" ^ signed_string_of_int p ^ ")")];
fun pretty_prod name (symbs, const, pri) =
Pretty.block (Pretty.breaks (pretty_name name @
map pretty_symb symbs @ pretty_const const @ pretty_pri pri));
fun pretty_nt (name, tag) =
let
fun prod_of_chain from = ([Nonterminal (from, ~1)], "", ~1);
val nt_prods =
Library.foldl (uncurry (union (op =))) ([], map snd (snd (Vector.sub (prods, tag)))) @
map prod_of_chain (these (AList.lookup (op =) chains tag));
in map (pretty_prod name) nt_prods end;
in maps pretty_nt (sort_wrt fst (Symtab.dest tags)) end;
(** Operations on gramars **)
val empty_gram =
Gram
{nt_count = 0,
prod_count = 0,
tags = Symtab.empty, chains = [],
lambdas = [],
prods = Vector.fromList [(([], []), [])]};
(*Invert list of chain productions*)
fun inverse_chains [] result = result
| inverse_chains ((root, branches: nt_tag list) :: cs) result =
let
fun add ([]: nt_tag list) result = result
| add (id :: ids) result =
let val old = these (AList.lookup (op =) result id);
in add ids (AList.update (op =) (id, root :: old) result) end;
in inverse_chains cs (add branches result) end;
(*Add productions to a grammar*)
fun extend_gram [] gram = gram
| extend_gram xprods (Gram {nt_count, prod_count, tags, chains, lambdas, prods}) =
let
(*Get tag for existing nonterminal or create a new one*)
fun get_tag nt_count tags nt =
(case Symtab.lookup tags nt of
SOME tag => (nt_count, tags, tag)
| NONE => (nt_count + 1, Symtab.update_new (nt, nt_count) tags, nt_count));
(*Convert symbols to the form used by the parser;
delimiters and predefined terms are stored as terminals,
nonterminals are converted to integer tags*)
fun symb_of [] nt_count tags result = (nt_count, tags, rev result)
| symb_of ((Syn_Ext.Delim s) :: ss) nt_count tags result =
symb_of ss nt_count tags
(Terminal (Lexicon.Token (Lexicon.Literal, s, Position.no_range)) :: result)
| symb_of ((Syn_Ext.Argument (s, p)) :: ss) nt_count tags result =
let
val (nt_count', tags', new_symb) =
(case Lexicon.predef_term s of
NONE =>
let val (nt_count', tags', s_tag) = get_tag nt_count tags s;
in (nt_count', tags', Nonterminal (s_tag, p)) end
| SOME tk => (nt_count, tags, Terminal tk));
in symb_of ss nt_count' tags' (new_symb :: result) end
| symb_of (_ :: ss) nt_count tags result = symb_of ss nt_count tags result;
(*Convert list of productions by invoking symb_of for each of them*)
fun prod_of [] nt_count prod_count tags result =
(nt_count, prod_count, tags, result)
| prod_of ((Syn_Ext.XProd (lhs, xsymbs, const, pri)) :: ps)
nt_count prod_count tags result =
let
val (nt_count', tags', lhs_tag) = get_tag nt_count tags lhs;
val (nt_count'', tags'', prods) = symb_of xsymbs nt_count' tags' [];
in
prod_of ps nt_count'' (prod_count + 1) tags''
((lhs_tag, (prods, const, pri)) :: result)
end;
val (nt_count', prod_count', tags', xprods') =
prod_of xprods nt_count prod_count tags [];
(*Copy array containing productions of old grammar;
this has to be done to preserve the old grammar while being able
to change the array's content*)
val prods' =
let
fun get_prod i =
if i < nt_count then Vector.sub (prods, i)
else (([], []), []);
in Array.tabulate (nt_count', get_prod) end;
val fromto_chains = inverse_chains chains [];
(*Add new productions to old ones*)
val (fromto_chains', lambdas', _) =
add_prods prods' fromto_chains lambdas NONE xprods';
val chains' = inverse_chains fromto_chains' [];
in
Gram
{nt_count = nt_count',
prod_count = prod_count',
tags = tags',
chains = chains',
lambdas = lambdas',
prods = Array.vector prods'}
end;
fun make_gram xprods = extend_gram xprods empty_gram;
(*Merge two grammars*)
fun merge_gram (gram_a, gram_b) =
let
(*find out which grammar is bigger*)
val
(Gram {nt_count = nt_count1, prod_count = prod_count1, tags = tags1,
chains = chains1, lambdas = lambdas1, prods = prods1},
Gram {nt_count = nt_count2, prod_count = prod_count2, tags = tags2,
chains = chains2, lambdas = lambdas2, prods = prods2}) =
let
val Gram {prod_count = count_a, ...} = gram_a;
val Gram {prod_count = count_b, ...} = gram_b;
in
if count_a > count_b
then (gram_a, gram_b)
else (gram_b, gram_a)
end;
(*get existing tag from grammar1 or create a new one*)
fun get_tag nt_count tags nt =
(case Symtab.lookup tags nt of
SOME tag => (nt_count, tags, tag)
| NONE => (nt_count + 1, Symtab.update_new (nt, nt_count) tags, nt_count));
val ((nt_count1', tags1'), tag_table) =
let
val tag_list = Symtab.dest tags2;
val table = Array.array (nt_count2, ~1);
fun store_tag nt_count tags ~1 = (nt_count, tags)
| store_tag nt_count tags tag =
let
val (nt_count', tags', tag') =
get_tag nt_count tags (fst (the (find_first (fn (n, t) => t = tag) tag_list)));
val _ = Array.update (table, tag, tag');
in store_tag nt_count' tags' (tag - 1) end;
in (store_tag nt_count1 tags1 (nt_count2 - 1), table) end;
(*convert grammar2 tag to grammar1 tag*)
fun convert_tag tag = Array.sub (tag_table, tag);
(*convert chain list to raw productions*)
fun mk_chain_prods [] result = result
| mk_chain_prods ((to, froms) :: cs) result =
let
val to_tag = convert_tag to;
fun make [] result = result
| make (from :: froms) result = make froms
((to_tag, ([Nonterminal (convert_tag from, ~1)], "", ~1)) :: result);
in mk_chain_prods cs (make froms [] @ result) end;
val chain_prods = mk_chain_prods chains2 [];
(*convert prods2 array to productions*)
fun process_nt ~1 result = result
| process_nt nt result =
let
val nt_prods = Library.foldl (uncurry (union (op =)))
([], map snd (snd (Vector.sub (prods2, nt))));
val lhs_tag = convert_tag nt;
(*convert tags in rhs*)
fun process_rhs [] result = result
| process_rhs (Terminal tk :: rhs) result =
process_rhs rhs (result @ [Terminal tk])
| process_rhs (Nonterminal (nt, prec) :: rhs) result =
process_rhs rhs (result @ [Nonterminal (convert_tag nt, prec)]);
(*convert tags in productions*)
fun process_prods [] result = result
| process_prods ((rhs, id, prec) :: ps) result =
process_prods ps ((lhs_tag, (process_rhs rhs [], id, prec)) :: result);
in process_nt (nt - 1) (process_prods nt_prods [] @ result) end;
val raw_prods = chain_prods @ process_nt (nt_count2 - 1) [];
val prods1' =
let
fun get_prod i =
if i < nt_count1 then Vector.sub (prods1, i)
else (([], []), []);
in Array.tabulate (nt_count1', get_prod) end;
val fromto_chains = inverse_chains chains1 [];
val (fromto_chains', lambdas', SOME prod_count1') =
add_prods prods1' fromto_chains lambdas1 (SOME prod_count1) raw_prods;
val chains' = inverse_chains fromto_chains' [];
in
Gram
{nt_count = nt_count1',
prod_count = prod_count1',
tags = tags1',
chains = chains',
lambdas = lambdas',
prods = Array.vector prods1'}
end;
(** Parser **)
datatype parsetree =
Node of string * parsetree list |
Tip of Lexicon.token;
type state =
nt_tag * int * (*identification and production precedence*)
parsetree list * (*already parsed nonterminals on rhs*)
symb list * (*rest of rhs*)
string * (*name of production*)
int; (*index for previous state list*)
(*Get all rhss with precedence >= min_prec*)
fun get_RHS min_prec = filter (fn (_, _, prec:int) => prec >= min_prec);
(*Get all rhss with precedence >= min_prec and < max_prec*)
fun get_RHS' min_prec max_prec =
filter (fn (_, _, prec:int) => prec >= min_prec andalso prec < max_prec);
(*Make states using a list of rhss*)
fun mk_states i min_prec lhs_ID rhss =
let fun mk_state (rhs, id, prod_prec) = (lhs_ID, prod_prec, [], rhs, id, i);
in map mk_state rhss end;
(*Add parse tree to list and eliminate duplicates
saving the maximum precedence*)
fun conc (t: parsetree list, prec:int) [] = (NONE, [(t, prec)])
| conc (t, prec) ((t', prec') :: ts) =
if t = t' then
(SOME prec',
if prec' >= prec then (t', prec') :: ts
else (t, prec) :: ts)
else
let val (n, ts') = conc (t, prec) ts
in (n, (t', prec') :: ts') end;
(*Update entry in used*)
fun update_trees ((B: nt_tag, (i, ts)) :: used) (A, t) =
if A = B then
let val (n, ts') = conc t ts
in ((A, (i, ts')) :: used, n) end
else
let val (used', n) = update_trees used (A, t)
in ((B, (i, ts)) :: used', n) end;
(*Replace entry in used*)
fun update_prec (A: nt_tag, prec) used =
let
fun update ((hd as (B, (_, ts))) :: used, used') =
if A = B
then used' @ ((A, (prec, ts)) :: used)
else update (used, hd :: used')
in update (used, []) end;
fun getS A max_prec Si =
filter
(fn (_, _, _, Nonterminal (B, prec) :: _, _, _) => A = B andalso prec <= max_prec
| _ => false) Si;
fun getS' A max_prec min_prec Si =
filter
(fn (_, _, _, Nonterminal (B, prec) :: _, _, _)
=> A = B andalso prec > min_prec andalso prec <= max_prec
| _ => false) Si;
fun get_states Estate i ii A max_prec =
filter
(fn (_, _, _, Nonterminal (B, prec) :: _, _, _) => A = B andalso prec <= max_prec
| _ => false)
(Array.sub (Estate, ii));
fun movedot_term (A, j, ts, Terminal a :: sa, id, i) c =
if Lexicon.valued_token c then (A, j, ts @ [Tip c], sa, id, i)
else (A, j, ts, sa, id, i);
fun movedot_nonterm ts (A, j, tss, Nonterminal _ :: sa, id, i) =
(A, j, tss @ ts, sa, id, i);
fun movedot_lambda _ [] = []
| movedot_lambda (B, j, tss, Nonterminal (A, k) :: sa, id, i) ((t, ki) :: ts) =
if k <= ki then
(B, j, tss @ t, sa, id, i) ::
movedot_lambda (B, j, tss, Nonterminal (A, k) :: sa, id, i) ts
else movedot_lambda (B, j, tss, Nonterminal (A, k) :: sa, id, i) ts;
val branching_level = Unsynchronized.ref 600; (*trigger value for warnings*)
(*get all productions of a NT and NTs chained to it which can
be started by specified token*)
fun prods_for prods chains include_none tk nts =
let
fun token_assoc (list, key) =
let
fun assoc [] result = result
| assoc ((keyi, pi) :: pairs) result =
if is_some keyi andalso Lexicon.matching_tokens (the keyi, key)
orelse include_none andalso is_none keyi then
assoc pairs (pi @ result)
else assoc pairs result;
in assoc list [] end;
fun get_prods [] result = result
| get_prods (nt :: nts) result =
let val nt_prods = snd (Vector.sub (prods, nt));
in get_prods nts ((token_assoc (nt_prods, tk)) @ result) end;
in get_prods (connected_with chains nts nts) [] end;
fun PROCESSS ctxt warned prods chains Estate i c states =
let
fun all_prods_for nt = prods_for prods chains true c [nt];
fun processS used [] (Si, Sii) = (Si, Sii)
| processS used (S :: States) (Si, Sii) =
(case S of
(_, _, _, Nonterminal (nt, min_prec) :: _, _, _) =>
let (*predictor operation*)
val (used', new_states) =
(case AList.lookup (op =) used nt of
SOME (used_prec, l) => (*nonterminal has been processed*)
if used_prec <= min_prec then
(*wanted precedence has been processed*)
(used, movedot_lambda S l)
else (*wanted precedence hasn't been parsed yet*)
let
val tk_prods = all_prods_for nt;
val States' = mk_states i min_prec nt
(get_RHS' min_prec used_prec tk_prods);
in (update_prec (nt, min_prec) used,
movedot_lambda S l @ States')
end
| NONE => (*nonterminal is parsed for the first time*)
let
val tk_prods = all_prods_for nt;
val States' = mk_states i min_prec nt (get_RHS min_prec tk_prods);
in ((nt, (min_prec, [])) :: used, States') end);
val dummy =
if not (! warned) andalso
length (new_states @ States) > ! branching_level then
(Context_Position.if_visible ctxt warning
"Currently parsed expression could be extremely ambiguous.";
warned := true)
else ();
in
processS used' (new_states @ States) (S :: Si, Sii)
end
| (_, _, _, Terminal a :: _, _, _) => (*scanner operation*)
processS used States
(S :: Si,
if Lexicon.matching_tokens (a, c) then movedot_term S c :: Sii else Sii)
| (A, prec, ts, [], id, j) => (*completer operation*)
let val tt = if id = "" then ts else [Node (id, ts)] in
if j = i then (*lambda production?*)
let
val (used', O) = update_trees used (A, (tt, prec));
in
(case O of
NONE =>
let
val Slist = getS A prec Si;
val States' = map (movedot_nonterm tt) Slist;
in processS used' (States' @ States) (S :: Si, Sii) end
| SOME n =>
if n >= prec then processS used' States (S :: Si, Sii)
else
let
val Slist = getS' A prec n Si;
val States' = map (movedot_nonterm tt) Slist;
in processS used' (States' @ States) (S :: Si, Sii) end)
end
else
let val Slist = get_states Estate i j A prec
in processS used (map (movedot_nonterm tt) Slist @ States) (S :: Si, Sii) end
end)
in processS [] states ([], []) end;
fun produce ctxt warned prods tags chains stateset i indata prev_token =
(case Array.sub (stateset, i) of
[] =>
let
val toks = if Lexicon.is_eof prev_token then indata else prev_token :: indata;
val pos = Position.str_of (Lexicon.pos_of_token prev_token);
in
if null toks then error ("Inner syntax error: unexpected end of input" ^ pos)
else error (Pretty.string_of (Pretty.block
(Pretty.str ("Inner syntax error" ^ pos ^ " at \"") ::
Pretty.breaks (map (Pretty.str o Lexicon.str_of_token) (#1 (split_last toks))) @
[Pretty.str "\""])))
end
| s =>
(case indata of
[] => Array.sub (stateset, i)
| c :: cs =>
let val (si, sii) = PROCESSS ctxt warned prods chains stateset i c s;
in Array.update (stateset, i, si);
Array.update (stateset, i + 1, sii);
produce ctxt warned prods tags chains stateset (i + 1) cs c
end));
fun get_trees l = map_filter (fn (_, _, [pt], _, _, _) => SOME pt | _ => NONE) l;
fun earley ctxt prods tags chains startsymbol indata =
let
val start_tag =
(case Symtab.lookup tags startsymbol of
SOME tag => tag
| NONE => error ("Inner syntax: unknown startsymbol " ^ quote startsymbol));
val S0 = [(~1, 0, [], [Nonterminal (start_tag, 0), Terminal Lexicon.eof], "", 0)];
val s = length indata + 1;
val Estate = Array.array (s, []);
val _ = Array.update (Estate, 0, S0);
in
get_trees
(produce ctxt (Unsynchronized.ref false) prods tags chains Estate 0 indata Lexicon.eof)
end;
fun parse ctxt (Gram {tags, prods, chains, ...}) start toks =
let
val end_pos =
(case try List.last toks of
NONE => Position.none
| SOME (Lexicon.Token (_, _, (_, end_pos))) => end_pos);
val r =
(case earley ctxt prods tags chains start (toks @ [Lexicon.mk_eof end_pos]) of
[] => raise Fail "Inner syntax: no parse trees"
| pts => pts);
in r end;
fun guess_infix_lr (Gram gram) c = (*based on educated guess*)
let
fun freeze a = map_range (curry Vector.sub a) (Vector.length a);
val prods = maps snd (maps snd (freeze (#prods gram)));
fun guess (SOME ([Nonterminal (_, k),
Terminal (Lexicon.Token (Lexicon.Literal, s, _)), Nonterminal (_, l)], _, j)) =
if k = j andalso l = j + 1 then SOME (s, true, false, j)
else if k = j + 1 then if l = j then SOME (s, false, true, j)
else if l = j + 1 then SOME (s, false, false, j)
else NONE
else NONE
| guess _ = NONE;
in guess (find_first (fn (_, s, _) => s = c) prods) end;
end;