(* Title: HOL/Library/SCT_Interpretation.thy
ID: $Id$
Author: Alexander Krauss, TU Muenchen
*)
header {* Applying SCT to function definitions *}
theory Interpretation
imports Main Misc_Tools Criterion
begin
definition
"idseq R s x = (s 0 = x \<and> (\<forall>i. R (s (Suc i)) (s i)))"
lemma not_acc_smaller:
assumes notacc: "\<not> accp R x"
shows "\<exists>y. R y x \<and> \<not> accp R y"
proof (rule classical)
assume "\<not> ?thesis"
hence "\<And>y. R y x \<Longrightarrow> accp R y" by blast
with accp.accI have "accp R x" .
with notacc show ?thesis by contradiction
qed
lemma non_acc_has_idseq:
assumes "\<not> accp R x"
shows "\<exists>s. idseq R s x"
proof -
have "\<exists>f. \<forall>x. \<not>accp R x \<longrightarrow> R (f x) x \<and> \<not>accp R (f x)"
by (rule choice, auto simp:not_acc_smaller)
then obtain f where
in_R: "\<And>x. \<not>accp R x \<Longrightarrow> R (f x) x"
and nia: "\<And>x. \<not>accp R x \<Longrightarrow> \<not>accp R (f x)"
by blast
let ?s = "\<lambda>i. (f ^ i) x"
{
fix i
have "\<not>accp R (?s i)"
by (induct i) (auto simp:nia `\<not>accp R x`)
hence "R (f (?s i)) (?s i)"
by (rule in_R)
}
hence "idseq R ?s x"
unfolding idseq_def
by auto
thus ?thesis by auto
qed
types ('a, 'q) cdesc =
"('q \<Rightarrow> bool) \<times> ('q \<Rightarrow> 'a) \<times>('q \<Rightarrow> 'a)"
fun in_cdesc :: "('a, 'q) cdesc \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
where
"in_cdesc (\<Gamma>, r, l) x y = (\<exists>q. x = r q \<and> y = l q \<and> \<Gamma> q)"
primrec mk_rel :: "('a, 'q) cdesc list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
where
"mk_rel [] x y = False"
| "mk_rel (c#cs) x y =
(in_cdesc c x y \<or> mk_rel cs x y)"
lemma some_rd:
assumes "mk_rel rds x y"
shows "\<exists>rd\<in>set rds. in_cdesc rd x y"
using assms
by (induct rds) (auto simp:in_cdesc_def)
(* from a value sequence, get a sequence of rds *)
lemma ex_cs:
assumes idseq: "idseq (mk_rel rds) s x"
shows "\<exists>cs. \<forall>i. cs i \<in> set rds \<and> in_cdesc (cs i) (s (Suc i)) (s i)"
proof -
from idseq
have a: "\<forall>i. \<exists>rd \<in> set rds. in_cdesc rd (s (Suc i)) (s i)"
by (auto simp:idseq_def intro:some_rd)
show ?thesis
by (rule choice) (insert a, blast)
qed
types 'a measures = "nat \<Rightarrow> 'a \<Rightarrow> nat"
fun stepP :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow>
('a \<Rightarrow> nat) \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat \<Rightarrow> bool) \<Rightarrow> bool"
where
"stepP (\<Gamma>1,r1,l1) (\<Gamma>2,r2,l2) m1 m2 R
= (\<forall>q\<^isub>1 q\<^isub>2. \<Gamma>1 q\<^isub>1 \<and> \<Gamma>2 q\<^isub>2 \<and> r1 q\<^isub>1 = l2 q\<^isub>2
\<longrightarrow> R (m2 (l2 q\<^isub>2)) ((m1 (l1 q\<^isub>1))))"
definition
decr :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow>
('a \<Rightarrow> nat) \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
where
"decr c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op <)"
definition
decreq :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow>
('a \<Rightarrow> nat) \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool"
where
"decreq c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op \<le>)"
definition
no_step :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> bool"
where
"no_step c1 c2 = stepP c1 c2 (\<lambda>x. 0) (\<lambda>x. 0) (\<lambda>x y. False)"
lemma decr_in_cdesc:
assumes "in_cdesc RD1 y x"
assumes "in_cdesc RD2 z y"
assumes "decr RD1 RD2 m1 m2"
shows "m2 y < m1 x"
using assms
by (cases RD1, cases RD2, auto simp:decr_def)
lemma decreq_in_cdesc:
assumes "in_cdesc RD1 y x"
assumes "in_cdesc RD2 z y"
assumes "decreq RD1 RD2 m1 m2"
shows "m2 y \<le> m1 x"
using assms
by (cases RD1, cases RD2, auto simp:decreq_def)
lemma no_inf_desc_nat_sequence:
fixes s :: "nat \<Rightarrow> nat"
assumes leq: "\<And>i. n \<le> i \<Longrightarrow> s (Suc i) \<le> s i"
assumes less: "\<exists>\<^sub>\<infinity>i. s (Suc i) < s i"
shows False
proof -
{
fix i j:: nat
assume "n \<le> i"
assume "i \<le> j"
{
fix k
have "s (i + k) \<le> s i"
proof (induct k)
case 0 thus ?case by simp
next
case (Suc k)
with leq[of "i + k"] `n \<le> i`
show ?case by simp
qed
}
from this[of "j - i"] `n \<le> i` `i \<le> j`
have "s j \<le> s i" by auto
}
note decr = this
let ?min = "LEAST x. x \<in> range (\<lambda>i. s (n + i))"
have "?min \<in> range (\<lambda>i. s (n + i))"
by (rule LeastI) auto
then obtain k where min: "?min = s (n + k)" by auto
from less
obtain k' where "n + k < k'"
and "s (Suc k') < s k'"
unfolding INF_nat by auto
with decr[of "n + k" k'] min
have "s (Suc k') < ?min" by auto
moreover from `n + k < k'`
have "s (Suc k') = s (n + (Suc k' - n))" by simp
ultimately
show False using not_less_Least by blast
qed
definition
approx :: "nat scg \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc
\<Rightarrow> 'a measures \<Rightarrow> 'a measures \<Rightarrow> bool"
where
"approx G C C' M M'
= (\<forall>i j. (dsc G i j \<longrightarrow> decr C C' (M i) (M' j))
\<and>(eq G i j \<longrightarrow> decreq C C' (M i) (M' j)))"
(* Unfolding "approx" for finite graphs *)
lemma approx_empty:
"approx (Graph {}) c1 c2 ms1 ms2"
unfolding approx_def has_edge_def dest_graph.simps by simp
lemma approx_less:
assumes "stepP c1 c2 (ms1 i) (ms2 j) (op <)"
assumes "approx (Graph Es) c1 c2 ms1 ms2"
shows "approx (Graph (insert (i, \<down>, j) Es)) c1 c2 ms1 ms2"
using assms
unfolding approx_def has_edge_def dest_graph.simps decr_def
by auto
lemma approx_leq:
assumes "stepP c1 c2 (ms1 i) (ms2 j) (op \<le>)"
assumes "approx (Graph Es) c1 c2 ms1 ms2"
shows "approx (Graph (insert (i, \<Down>, j) Es)) c1 c2 ms1 ms2"
using assms
unfolding approx_def has_edge_def dest_graph.simps decreq_def
by auto
lemma "approx (Graph {(1, \<down>, 2),(2, \<Down>, 3)}) c1 c2 ms1 ms2"
apply (intro approx_less approx_leq approx_empty)
oops
(*
fun
no_step :: "('a, 'q) cdesc \<Rightarrow> ('a, 'q) cdesc \<Rightarrow> bool"
where
"no_step (\<Gamma>1, r1, l1) (\<Gamma>2, r2, l2) =
(\<forall>q\<^isub>1 q\<^isub>2. \<Gamma>1 q\<^isub>1 \<and> \<Gamma>2 q\<^isub>2 \<and> r1 q\<^isub>1 = l2 q\<^isub>2 \<longrightarrow> False)"
*)
lemma no_stepI:
"stepP c1 c2 m1 m2 (\<lambda>x y. False)
\<Longrightarrow> no_step c1 c2"
by (cases c1, cases c2) (auto simp: no_step_def)
definition
sound_int :: "nat acg \<Rightarrow> ('a, 'q) cdesc list
\<Rightarrow> 'a measures list \<Rightarrow> bool"
where
"sound_int \<A> RDs M =
(\<forall>n<length RDs. \<forall>m<length RDs.
no_step (RDs ! n) (RDs ! m) \<or>
(\<exists>G. (\<A> \<turnstile> n \<leadsto>\<^bsup>G\<^esup> m) \<and> approx G (RDs ! n) (RDs ! m) (M ! n) (M ! m)))"
(* The following are uses by the tactics *)
lemma length_simps: "length [] = 0" "length (x#xs) = Suc (length xs)"
by auto
lemma all_less_zero: "\<forall>n<(0::nat). P n"
by simp
lemma all_less_Suc:
assumes Pk: "P k"
assumes Pn: "\<forall>n<k. P n"
shows "\<forall>n<Suc k. P n"
proof (intro allI impI)
fix n assume "n < Suc k"
show "P n"
proof (cases "n < k")
case True with Pn show ?thesis by simp
next
case False with `n < Suc k` have "n = k" by simp
with Pk show ?thesis by simp
qed
qed
lemma step_witness:
assumes "in_cdesc RD1 y x"
assumes "in_cdesc RD2 z y"
shows "\<not> no_step RD1 RD2"
using assms
by (cases RD1, cases RD2) (auto simp:no_step_def)
theorem SCT_on_relations:
assumes R: "R = mk_rel RDs"
assumes sound: "sound_int \<A> RDs M"
assumes "SCT \<A>"
shows "\<forall>x. accp R x"
proof (rule, rule classical)
fix x
assume "\<not> accp R x"
with non_acc_has_idseq
have "\<exists>s. idseq R s x" .
then obtain s where "idseq R s x" ..
hence "\<exists>cs. \<forall>i. cs i \<in> set RDs \<and>
in_cdesc (cs i) (s (Suc i)) (s i)"
unfolding R by (rule ex_cs)
then obtain cs where
[simp]: "\<And>i. cs i \<in> set RDs"
and ird[simp]: "\<And>i. in_cdesc (cs i) (s (Suc i)) (s i)"
by blast
let ?cis = "\<lambda>i. index_of RDs (cs i)"
have "\<forall>i. \<exists>G. (\<A> \<turnstile> ?cis i \<leadsto>\<^bsup>G\<^esup> (?cis (Suc i)))
\<and> approx G (RDs ! ?cis i) (RDs ! ?cis (Suc i))
(M ! ?cis i) (M ! ?cis (Suc i))" (is "\<forall>i. \<exists>G. ?P i G")
proof
fix i
let ?n = "?cis i" and ?n' = "?cis (Suc i)"
have "in_cdesc (RDs ! ?n) (s (Suc i)) (s i)"
"in_cdesc (RDs ! ?n') (s (Suc (Suc i))) (s (Suc i))"
by (simp_all add:index_of_member)
with step_witness
have "\<not> no_step (RDs ! ?n) (RDs ! ?n')" .
moreover have
"?n < length RDs"
"?n' < length RDs"
by (simp_all add:index_of_length[symmetric])
ultimately
obtain G
where "\<A> \<turnstile> ?n \<leadsto>\<^bsup>G\<^esup> ?n'"
and "approx G (RDs ! ?n) (RDs ! ?n') (M ! ?n) (M ! ?n')"
using sound
unfolding sound_int_def by auto
thus "\<exists>G. ?P i G" by blast
qed
with choice
have "\<exists>Gs. \<forall>i. ?P i (Gs i)" .
then obtain Gs where
A: "\<And>i. \<A> \<turnstile> ?cis i \<leadsto>\<^bsup>(Gs i)\<^esup> (?cis (Suc i))"
and B: "\<And>i. approx (Gs i) (RDs ! ?cis i) (RDs ! ?cis (Suc i))
(M ! ?cis i) (M ! ?cis (Suc i))"
by blast
let ?p = "\<lambda>i. (?cis i, Gs i)"
from A have "has_ipath \<A> ?p"
unfolding has_ipath_def
by auto
with `SCT \<A>` SCT_def
obtain th where "is_desc_thread th ?p"
by auto
then obtain n
where fr: "\<forall>i\<ge>n. eqlat ?p th i"
and inf: "\<exists>\<^sub>\<infinity>i. descat ?p th i"
unfolding is_desc_thread_def by auto
from B
have approx:
"\<And>i. approx (Gs i) (cs i) (cs (Suc i))
(M ! ?cis i) (M ! ?cis (Suc i))"
by (simp add:index_of_member)
let ?seq = "\<lambda>i. (M ! ?cis i) (th i) (s i)"
have "\<And>i. n < i \<Longrightarrow> ?seq (Suc i) \<le> ?seq i"
proof -
fix i
let ?q1 = "th i" and ?q2 = "th (Suc i)"
assume "n < i"
with fr have "eqlat ?p th i" by simp
hence "dsc (Gs i) ?q1 ?q2 \<or> eq (Gs i) ?q1 ?q2"
by simp
thus "?seq (Suc i) \<le> ?seq i"
proof
assume "dsc (Gs i) ?q1 ?q2"
with approx
have a:"decr (cs i) (cs (Suc i))
((M ! ?cis i) ?q1) ((M ! ?cis (Suc i)) ?q2)"
unfolding approx_def by auto
show ?thesis
apply (rule less_imp_le)
apply (rule decr_in_cdesc[of _ "s (Suc i)" "s i"])
by (rule ird a)+
next
assume "eq (Gs i) ?q1 ?q2"
with approx
have a:"decreq (cs i) (cs (Suc i))
((M ! ?cis i) ?q1) ((M ! ?cis (Suc i)) ?q2)"
unfolding approx_def by auto
show ?thesis
apply (rule decreq_in_cdesc[of _ "s (Suc i)" "s i"])
by (rule ird a)+
qed
qed
moreover have "\<exists>\<^sub>\<infinity>i. ?seq (Suc i) < ?seq i" unfolding INF_nat
proof
fix i
from inf obtain j where "i < j" and d: "descat ?p th j"
unfolding INF_nat by auto
let ?q1 = "th j" and ?q2 = "th (Suc j)"
from d have "dsc (Gs j) ?q1 ?q2" by auto
with approx
have a:"decr (cs j) (cs (Suc j))
((M ! ?cis j) ?q1) ((M ! ?cis (Suc j)) ?q2)"
unfolding approx_def by auto
have "?seq (Suc j) < ?seq j"
apply (rule decr_in_cdesc[of _ "s (Suc j)" "s j"])
by (rule ird a)+
with `i < j`
show "\<exists>j. i < j \<and> ?seq (Suc j) < ?seq j" by auto
qed
ultimately have False
by (rule no_inf_desc_nat_sequence[of "Suc n"]) simp
thus "accp R x" ..
qed
end