(* Title: Tools/Code/code_namespace.ML
Author: Florian Haftmann, TU Muenchen
Mastering target language namespaces.
*)
signature CODE_NAMESPACE =
sig
val variant_case_insensitive: string -> Name.context -> string * Name.context
datatype export = Private | Opaque | Public
val is_public: export -> bool
val not_private: export -> bool
val join_exports: export list -> export
type flat_program
val flat_program: Proof.context
-> { module_prefix: string, module_name: string,
reserved: Name.context, identifiers: Code_Printer.identifiers, empty_nsp: 'a,
namify_stmt: Code_Thingol.stmt -> string -> 'a -> string * 'a,
modify_stmt: Code_Thingol.stmt -> Code_Thingol.stmt option }
-> Code_Symbol.T list -> Code_Thingol.program
-> { deresolver: string -> Code_Symbol.T -> string,
flat_program: flat_program }
datatype ('a, 'b) node =
Dummy
| Stmt of export * 'a
| Module of ('b * (string * ('a, 'b) node) Code_Symbol.Graph.T)
type ('a, 'b) hierarchical_program
val hierarchical_program: Proof.context
-> { module_name: string,
reserved: Name.context, identifiers: Code_Printer.identifiers,
empty_nsp: 'c, namify_module: string -> 'c -> string * 'c,
namify_stmt: Code_Thingol.stmt -> string -> 'c -> string * 'c,
cyclic_modules: bool,
class_transitive: bool, class_relation_public: bool,
empty_data: 'b, memorize_data: Code_Symbol.T -> 'b -> 'b,
modify_stmts: (Code_Symbol.T * (export * Code_Thingol.stmt)) list -> (export * 'a) option list }
-> Code_Symbol.T list -> Code_Thingol.program
-> { deresolver: string list -> Code_Symbol.T -> string,
hierarchical_program: ('a, 'b) hierarchical_program }
val print_hierarchical: { print_module: string list -> string -> 'b -> 'c list -> 'c,
print_stmt: string list -> Code_Symbol.T * (export * 'a) -> 'c,
lift_markup: (Pretty.T -> Pretty.T) -> 'c -> 'c }
-> ('a, 'b) hierarchical_program -> 'c list
end;
structure Code_Namespace : CODE_NAMESPACE =
struct
(** name handling on case-insensitive file systems **)
fun restore_for cs =
if forall Symbol.is_ascii_upper cs then map Symbol.to_ascii_upper
else if Symbol.is_ascii_upper (nth cs 0) then nth_map 0 Symbol.to_ascii_upper
else I;
fun variant_case_insensitive s ctxt =
let
val cs = Symbol.explode s;
val s_lower = implode (map Symbol.to_ascii_lower cs);
val restore = implode o restore_for cs o Symbol.explode;
in
ctxt
|> Name.variant s_lower
|>> restore
end;
(** export **)
datatype export = Private | Opaque | Public;
fun is_public Public = true
| is_public _ = false;
fun not_private Public = true
| not_private Opaque = true
| not_private _ = false;
fun mark_export Public _ = Public
| mark_export _ Public = Public
| mark_export Opaque _ = Opaque
| mark_export _ Opaque = Opaque
| mark_export _ _ = Private;
fun join_exports exports = fold mark_export exports Private;
fun dependent_exports { program = program, class_transitive = class_transitive } =
let
fun is_datatype_or_class (Code_Symbol.Type_Constructor _) = true
| is_datatype_or_class (Code_Symbol.Type_Class _) = true
| is_datatype_or_class _ = false;
fun is_relevant (Code_Symbol.Class_Relation _) = true
| is_relevant sym = is_datatype_or_class sym;
val proto_gr = Code_Symbol.Graph.restrict is_relevant program;
val gr =
proto_gr
|> Code_Symbol.Graph.fold
(fn (sym, (_, (_, deps))) =>
if is_relevant sym
then I
else
Code_Symbol.Graph.new_node (sym, Code_Thingol.NoStmt)
#> Code_Symbol.Graph.Keys.fold
(fn sym' =>
if is_relevant sym'
then Code_Symbol.Graph.add_edge (sym, sym')
else I) deps) program
|> class_transitive ?
Code_Symbol.Graph.fold (fn (sym as Code_Symbol.Type_Class _, _) =>
fold (curry Code_Symbol.Graph.add_edge sym)
((remove (op =) sym o Code_Symbol.Graph.all_succs proto_gr) [sym]) | _ => I) proto_gr
fun deps_of sym =
let
val succs = Code_Symbol.Graph.Keys.dest o Code_Symbol.Graph.imm_succs gr;
val deps1 = succs sym;
val deps2 = [] |> fold (union (op =)) (map succs deps1) |> subtract (op =) deps1
in (deps1, deps2) end;
in
{ is_datatype_or_class = is_datatype_or_class,
deps_of = deps_of }
end;
fun mark_exports_aux { program = program, prefix_of = prefix_of, map_export = map_export,
is_datatype_or_class = is_datatype_or_class, deps_of = deps_of,
class_relation_public = class_relation_public } prefix sym =
let
val export = (if is_datatype_or_class sym then Opaque else Public);
val (dependent_export1, dependent_export2) =
case Code_Symbol.Graph.get_node program sym of
Code_Thingol.Fun _ => (SOME Opaque, NONE)
| Code_Thingol.Classinst _ => (SOME Opaque, NONE)
| Code_Thingol.Datatypecons _ => (SOME Public, SOME Opaque)
| Code_Thingol.Classparam _ => (SOME Public, SOME Opaque)
| Code_Thingol.Class _ => (SOME Opaque, NONE)
| Code_Thingol.Classrel _ =>
(if class_relation_public
then (SOME Public, SOME Opaque)
else (SOME Opaque, NONE))
| _ => (NONE, NONE);
val dependent_exports =
case dependent_export1 of
SOME export1 => (case dependent_export2 of
SOME export2 =>
let
val (deps1, deps2) = deps_of sym
in map (rpair export1) deps1 @ map (rpair export2) deps2 end
| NONE => map (rpair export1) (fst (deps_of sym)))
| NONE => [];
in
map_export prefix sym (mark_export export)
#> fold (fn (sym, export) => map_export (prefix_of sym) sym (mark_export export))
dependent_exports
end;
fun mark_exports { program = program, prefix_of = prefix_of, map_export = map_export,
class_transitive = class_transitive, class_relation_public = class_relation_public } =
let
val { is_datatype_or_class, deps_of } =
dependent_exports { program = program, class_transitive = class_transitive };
in
mark_exports_aux { program = program, prefix_of = prefix_of, map_export = map_export,
is_datatype_or_class = is_datatype_or_class, deps_of = deps_of,
class_relation_public = class_relation_public }
end;
(** fundamental module name hierarchy **)
fun module_fragments' { identifiers, reserved } name =
case Code_Symbol.lookup_module_data identifiers name of
SOME (fragments, _) => fragments
| NONE => map (fn fragment => fst (Name.variant fragment reserved)) (Long_Name.explode name);
fun module_fragments { module_name, identifiers, reserved } =
if module_name = ""
then module_fragments' { identifiers = identifiers, reserved = reserved }
else K (Long_Name.explode module_name);
fun build_module_namespace ctxt enforce_upper { module_prefix, module_name, identifiers, reserved } program =
let
val module_names = build (Code_Symbol.Graph.fold (insert (op =) o Code_Symbol.default_prefix ctxt o fst) program);
val module_fragments' = module_fragments
{ module_name = module_name, identifiers = identifiers, reserved = reserved };
val adjust_case = if enforce_upper then map (Name.enforce_case true) else I;
in
fold (fn name => Symtab.update (name, adjust_case (Long_Name.explode module_prefix @ module_fragments' name)))
module_names Symtab.empty
end;
fun prep_symbol ctxt { module_namespace, force_module, identifiers } sym =
case Code_Symbol.lookup identifiers sym of
NONE => ((the o Symtab.lookup module_namespace o Code_Symbol.default_prefix ctxt) sym,
Code_Symbol.default_base sym)
| SOME prefix_name => if null force_module then prefix_name
else (force_module, snd prefix_name);
fun has_priority identifiers = is_some o Code_Symbol.lookup identifiers;
fun build_proto_program { empty, add_stmt, add_dep } program =
empty
|> Code_Symbol.Graph.fold (fn (sym, (stmt, _)) => add_stmt sym stmt) program
|> Code_Symbol.Graph.fold (fn (sym, (_, (_, syms))) =>
Code_Symbol.Graph.Keys.fold (add_dep sym) syms) program;
fun prioritize has_priority = uncurry append o List.partition has_priority;
(** flat program structure **)
type flat_program = ((string * (export * Code_Thingol.stmt) option) Code_Symbol.Graph.T * (string * Code_Symbol.T list) list) Graph.T;
fun flat_program ctxt { module_prefix, module_name, reserved,
identifiers, empty_nsp, namify_stmt, modify_stmt } exports program =
let
(* building module name hierarchy *)
val module_namespace = build_module_namespace ctxt true { module_prefix = module_prefix,
module_name = module_name, identifiers = identifiers, reserved = reserved } program;
val prep_sym = prep_symbol ctxt { module_namespace = module_namespace,
force_module = Long_Name.explode module_name, identifiers = identifiers }
#>> Long_Name.implode;
val sym_priority = has_priority identifiers;
(* distribute statements over hierarchy *)
val mark_exports = mark_exports { program = program, prefix_of = fst o prep_sym,
map_export = fn module_name => fn sym =>
Graph.map_node module_name o apfst o Code_Symbol.Graph.map_node sym o apsnd o apfst,
class_transitive = false, class_relation_public = false };
fun add_stmt sym stmt =
let
val (module_name, base) = prep_sym sym;
in
Graph.default_node (module_name, (Code_Symbol.Graph.empty, []))
#> (Graph.map_node module_name o apfst)
(Code_Symbol.Graph.new_node (sym, (base, (if null exports then Public else Private, stmt))))
end;
fun add_dep sym sym' =
let
val (module_name, _) = prep_sym sym;
val (module_name', _) = prep_sym sym';
in if module_name = module_name'
then (Graph.map_node module_name o apfst) (Code_Symbol.Graph.add_edge (sym, sym'))
else (Graph.map_node module_name o apsnd)
(AList.map_default (op =) (module_name', []) (insert (op =) sym'))
#> mark_exports module_name' sym'
end;
val proto_program = build_proto_program
{ empty = Graph.empty, add_stmt = add_stmt, add_dep = add_dep } program
|> fold (fn sym => mark_exports ((fst o prep_sym) sym) sym) exports;
(* name declarations and statement modifications *)
fun declare sym (base, (_, stmt)) (gr, nsp) =
let
val (base', nsp') = namify_stmt stmt base nsp;
val gr' = (Code_Symbol.Graph.map_node sym o apfst) (K base') gr;
in (gr', nsp') end;
fun declarations gr = (gr, empty_nsp)
|> fold (fn sym => declare sym (Code_Symbol.Graph.get_node gr sym))
(prioritize sym_priority (Code_Symbol.Graph.keys gr))
|> fst
|> Code_Symbol.Graph.map_strong_conn (fn syms_bases_exports_stmts =>
map snd syms_bases_exports_stmts
|> (map o apsnd) (fn (export, stmt) => Option.map (pair export) (modify_stmt stmt)));
val flat_program = proto_program
|> (Graph.map o K o apfst) declarations;
(* qualified and unqualified imports, deresolving *)
fun base_deresolver sym = fst (Code_Symbol.Graph.get_node
(fst (Graph.get_node flat_program (fst (prep_sym sym)))) sym);
fun classify_names gr imports =
let
val import_tab = maps
(fn (module_name, syms) => map (rpair module_name) syms) imports;
val imported_syms = map fst import_tab;
val here_syms = Code_Symbol.Graph.keys gr;
in
Code_Symbol.Table.empty
|> fold (fn sym => Code_Symbol.Table.update (sym, base_deresolver sym)) here_syms
|> fold (fn sym => Code_Symbol.Table.update (sym,
Long_Name.append (the (AList.lookup (op =) import_tab sym))
(base_deresolver sym))) imported_syms
end;
val deresolver_tab = Symtab.make (AList.make
(uncurry classify_names o Graph.get_node flat_program)
(Graph.keys flat_program));
fun deresolver "" sym =
Long_Name.append (fst (prep_sym sym)) (base_deresolver sym)
| deresolver module_name sym =
the (Code_Symbol.Table.lookup (the (Symtab.lookup deresolver_tab module_name)) sym)
handle Option.Option => error ("Unknown statement name: "
^ Code_Symbol.quote ctxt sym);
in { deresolver = deresolver, flat_program = flat_program } end;
(** hierarchical program structure **)
datatype ('a, 'b) node =
Dummy
| Stmt of export * 'a
| Module of ('b * (string * ('a, 'b) node) Code_Symbol.Graph.T);
type ('a, 'b) hierarchical_program = (string * ('a, 'b) node) Code_Symbol.Graph.T;
fun the_stmt (Stmt (export, stmt)) = (export, stmt);
fun map_module_content f (Module content) = Module (f content);
fun map_module [] = I
| map_module (name_fragment :: name_fragments) =
apsnd o Code_Symbol.Graph.map_node (Code_Symbol.Module name_fragment) o apsnd o map_module_content
o map_module name_fragments;
fun map_module_stmts f_module f_stmts sym_base_nodes =
let
val some_modules =
sym_base_nodes
|> map (fn (_, (base, Module content)) => SOME (base, content) | _ => NONE)
|> (burrow_options o map o apsnd) f_module;
val some_export_stmts =
sym_base_nodes
|> map (fn (sym, (base, Stmt export_stmt)) => SOME ((sym, export_stmt), base) | _ => NONE)
|> (burrow_options o burrow_fst) (fn [] => [] | xs => f_stmts xs)
in
map2 (fn SOME (base, content) => (K (base, Module content))
| NONE => fn SOME (some_export_stmt, base) =>
(base, case some_export_stmt of SOME export_stmt => Stmt export_stmt | NONE => Dummy))
some_modules some_export_stmts
end;
fun hierarchical_program ctxt { module_name, reserved, identifiers, empty_nsp,
namify_module, namify_stmt, cyclic_modules,
class_transitive, class_relation_public,
empty_data, memorize_data, modify_stmts }
exports program =
let
(* building module name hierarchy *)
val module_namespace = build_module_namespace ctxt false { module_prefix = "",
module_name = module_name, identifiers = identifiers, reserved = reserved } program;
val prep_sym = prep_symbol ctxt { module_namespace = module_namespace,
force_module = Long_Name.explode module_name, identifiers = identifiers }
val sym_priority = has_priority identifiers;
(* building empty module hierarchy *)
val empty_module = (empty_data, Code_Symbol.Graph.empty);
fun ensure_module name_fragment (data, nodes) =
if can (Code_Symbol.Graph.get_node nodes) (Code_Symbol.Module name_fragment) then (data, nodes)
else (data,
nodes |> Code_Symbol.Graph.new_node (Code_Symbol.Module name_fragment, (name_fragment, Module empty_module)));
fun allocate_module [] = I
| allocate_module (name_fragment :: name_fragments) =
ensure_module name_fragment
#> (apsnd o Code_Symbol.Graph.map_node (Code_Symbol.Module name_fragment) o apsnd o map_module_content o allocate_module) name_fragments;
val empty_program =
empty_module
|> Symtab.fold (fn (_, fragments) => allocate_module fragments) module_namespace
|> Code_Symbol.Graph.fold (allocate_module o these o Option.map fst
o Code_Symbol.lookup identifiers o fst) program;
(* distribute statements over hierarchy *)
val mark_exports = mark_exports { program = program, prefix_of = fst o prep_sym,
map_export = fn name_fragments => fn sym => fn f =>
(map_module name_fragments o apsnd o Code_Symbol.Graph.map_node sym o apsnd)
(fn Stmt (export, stmt) => Stmt (f export, stmt)),
class_transitive = class_transitive, class_relation_public = class_relation_public };
fun add_stmt sym stmt =
let
val (name_fragments, base) = prep_sym sym;
in
(map_module name_fragments o apsnd)
(Code_Symbol.Graph.new_node (sym, (base, Stmt (if null exports then Public else Private, stmt))))
end;
fun add_edge_acyclic_error error_msg dep gr =
Code_Symbol.Graph.add_edge_acyclic dep gr
handle Code_Symbol.Graph.CYCLES _ => error (error_msg ())
fun add_dep sym sym' =
let
val (name_fragments, _) = prep_sym sym;
val (name_fragments', _) = prep_sym sym';
val (name_fragments_common, (diff, diff')) =
chop_common_prefix (op =) (name_fragments, name_fragments');
val is_cross_module = not (null diff andalso null diff');
val dep = apply2 hd (map Code_Symbol.Module diff @ [sym], map Code_Symbol.Module diff' @ [sym']);
val add_edge = if is_cross_module andalso not cyclic_modules
then add_edge_acyclic_error (fn _ => "Dependency "
^ Code_Symbol.quote ctxt sym ^ " -> "
^ Code_Symbol.quote ctxt sym'
^ " would result in module dependency cycle") dep
else Code_Symbol.Graph.add_edge dep;
in
(map_module name_fragments_common o apsnd) add_edge
#> (if is_cross_module then mark_exports name_fragments' sym' else I)
end;
val proto_program = build_proto_program
{ empty = empty_program, add_stmt = add_stmt, add_dep = add_dep } program
|> fold (fn sym => mark_exports ((fst o prep_sym) sym) sym) exports;
(* name declarations, data and statement modifications *)
fun make_declarations nsps (data, nodes) =
let
val (module_fragments, stmt_syms) =
Code_Symbol.Graph.keys nodes
|> List.partition
(fn sym => case Code_Symbol.Graph.get_node nodes sym
of (_, Module _) => true | _ => false)
|> apply2 (prioritize sym_priority)
fun declare namify sym (nsps, nodes) =
let
val (base, node) = Code_Symbol.Graph.get_node nodes sym;
val (base', nsps') = namify node base nsps;
val nodes' = Code_Symbol.Graph.map_node sym (K (base', node)) nodes;
in (nsps', nodes') end;
val (nsps', nodes') = (nsps, nodes)
|> fold (declare (K namify_module)) module_fragments
|> fold (declare (namify_stmt o snd o the_stmt)) stmt_syms;
fun modify_stmts' syms_stmts =
let
val stmts' = modify_stmts syms_stmts
in stmts' @ replicate (length syms_stmts - length stmts') NONE end;
val nodes'' =
nodes'
|> Code_Symbol.Graph.map_strong_conn (map_module_stmts (make_declarations nsps') modify_stmts');
val data' = fold memorize_data stmt_syms data;
in (data', nodes'') end;
val (_, hierarchical_program) = make_declarations empty_nsp proto_program;
(* deresolving *)
fun deresolver prefix_fragments sym =
let
val (name_fragments, _) = prep_sym sym;
val (_, (_, remainder)) = chop_common_prefix (op =) (prefix_fragments, name_fragments);
val nodes = fold (fn name_fragment => fn nodes => case Code_Symbol.Graph.get_node nodes (Code_Symbol.Module name_fragment)
of (_, Module (_, nodes)) => nodes) name_fragments hierarchical_program;
val (base', _) = Code_Symbol.Graph.get_node nodes sym;
in Long_Name.implode (remainder @ [base']) end
handle Code_Symbol.Graph.UNDEF _ => error ("Unknown statement name: "
^ Code_Symbol.quote ctxt sym);
in { deresolver = deresolver, hierarchical_program = hierarchical_program } end;
fun print_hierarchical { print_module, print_stmt, lift_markup } =
let
fun print_node _ (_, Dummy) =
NONE
| print_node prefix_fragments (sym, Stmt stmt) =
SOME (lift_markup (Code_Printer.markup_stmt sym)
(print_stmt prefix_fragments (sym, stmt)))
| print_node prefix_fragments (Code_Symbol.Module name_fragment, Module (data, nodes)) =
let
val prefix_fragments' = prefix_fragments @ [name_fragment]
in
Option.map (print_module prefix_fragments'
name_fragment data) (print_nodes prefix_fragments' nodes)
end
and print_nodes prefix_fragments nodes =
let
val xs = (map_filter (fn sym => print_node prefix_fragments
(sym, snd (Code_Symbol.Graph.get_node nodes sym))) o rev o flat o Code_Symbol.Graph.strong_conn) nodes
in if null xs then NONE else SOME xs end;
in these o print_nodes [] end;
end;